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Precision agriculture introduces an innovative approach to farm management by 

involving the use of technologies such as the Internet of Things (IoT), Artificial 

Intelligence (AI), and sensor networks to optimize resources and increase crop 

yields. In this context, the present study aimed to develop a tomato crop 

prediction system using IoT, AI, and sensor networks. A system architecture 

was designed, including distributed sensors, IoT gateways, and a cloud platform 

running AI models based on recurrent neural networks. These AI models were 

trained with environmental data and validated using actual harvest data. The 

results showed up that the model could predict weekly harvest volumes with an 

average error of 3.2% during the best 4-week period. The integration of IoT, AI, 

and sensor networks proved to be effective for accurate crop prediction and has 

potential for other applications in precision agriculture. 
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1. INTRODUCTION 

Precision agriculture is an innovative approach to agricultural management that uses measurement and 

data analysis techniques to optimize resources and maximize crop yields [1]. This approach is based on 

providing plants with exactly what they need, at the right time and in precise quantities, by measuring and 

monitoring soil properties, climate, and crop conditions [2]. 

The adoption of precision agriculture has been driven by advances in technologies such as the Internet of 

Things (IoT), artificial intelligence (AI), and sensor networks [3]. These technologies allow substantial 

amounts of data to be collected and analyzed in real-time, facilitating informed decision-making and the 

implementation of specific agricultural practices for each area or even each plant [4]. 

IoT plays a critical role in enabling the connection and communication of devices and sensors in 

agricultural fields [5]. These sensors collect data on variables such as soil humidity, temperature, solar 

radiation, and the presence of pests or diseases. This data is transmitted over wireless networks to a cloud 

platform, where it is stored and processed [6]. 

AI analyzes collected data using techniques like machine learning and deep learning to identify patterns, 

make predictions, and inform decisions about irrigation, fertilizers, and pesticide application [7][8]. 

Furthermore, AI has also been used for image recognition and the detection of pests and diseases in crops [8]. 

Sensor networks play a crucial role in collecting real-time data from agricultural fields [9]. These 

networks are composed of multiple sensor nodes distributed around interest, which transmit the collected data 

to a central node or gateway. From there, the data is sent to the cloud for processing and analysis [10]. 

Big Data is crucial in precision agriculture, enabling the analysis of large volumes of data from IoT 

sensors, satellite imagery, and weather data [11][12]. This integration of massive data facilitates informed 

decision-making and optimization of agricultural processes, from planting to harvesting [13]. Big Data allows 

farmers to predict weather patterns, detect crop diseases early, and precisely adjust the use of resources such 

as water and fertilizers [14][15]. However, handling large-scale data also poses challenges in terms of privacy 

and security, requiring the implementation of robust data protection measures to ensure farmers' trust in 

adopting these advanced technologies [11][16]. 

Digital twins are emerging as a powerful tool in modern agriculture, offering a detailed virtual 

representation of physical agricultural systems [17][18]. These digital replicas allow farmers and scientists to 

simulate, monitor, and optimize agricultural processes in real-time, from crop growth to livestock management 

[19][20]. Digital twins integrate data from IoT sensors, satellite imagery, and predictive models to create a 

holistic view of the agricultural environment [18]. This technology facilitates yield prediction, early problem 

detection, and proactive decision-making to improve the efficiency and sustainability of agricultural operations 

[20][21]. Although its implementation still faces technical and adoption challenges, digital twins promise to 

revolutionize agriculture by providing accurate insights and enabling smarter and more sustainable 

management of agricultural resources [18][21]. 

The integration of these technologies in precision agriculture has proven to be beneficial in various 

aspects, such as increasing yields, reducing resource waste (water, fertilizers, pesticides), improving crop 

quality, and reducing environmental impact [22]. 

In tomato agriculture, the implementation of Industry 4.0 technologies has become crucial to optimize 

production and face the current challenges of the sector [1]. Tomato cultivation, being one of the most 

important crops worldwide, requires precise management of resources such as water, nutrients and protection 

against pests and diseases [2]. Technologies such as IoT, AI and sensor networks allow continuous and accurate 

monitoring of crop conditions, facilitating informed decision making in real time [3][5]. For example, soil 

moisture sensors can optimize irrigation, while AI cameras can detect diseases or nutritional deficiencies early 

[6][7]. The use of drones and Big Data analysis allows a holistic vision of the crop, improving the planning 

and execution of tasks [13]. These innovations not only increase the yield and quality of tomatoes, but also 

reduce the use of inputs, reducing costs and environmental impact [23]. In an increasingly competitive market 

and with growing concerns about sustainability, the adoption of these technologies in tomato production 

becomes essential to ensure the efficiency, profitability and long-term sustainability of this important crop [24]. 

 

1.1. Comprehensive Theoretical Base and Proposed Method 

This article proposes a precision agriculture system for tomato crops that integrates IoT, AI, and sensor 

networks to predict harvests. The system consists of the following main components: 

• Sensor Network: A network of sensors distributed in the agricultural field collects data on key variables, 

such as soil moisture, temperature, solar radiation, relative humidity, and other relevant environmental 

factors [23]. The sensor nodes are equipped with rechargeable batteries and wireless communication to 

transmit the collected data to a central node or gateway. 
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• IoT Gateway: The IoT gateway receives data from sensor nodes and transmits it to a cloud platform over 

a network connection (such as Wi-Fi, cellular, or satellite). The gateway may also include local processing 

capabilities to perform basic analysis and make real-time decisions [25]. 

• Cloud Platform: The data collected by the sensors is stored and processed on a cloud platform. This 

platform uses AI techniques, such as machine learning and deep learning, to analyze data and extract 

valuable insights [26]. AI models are trained with historical data and continually updated with new data 

collected to improve their accuracy. 

• Visualization and Control System: The results of data analysis and recommendations generated by AI 

models are presented to farmers through a visualization and control system. This system can take the form 

of a web or mobile application, or a SCADA (Supervision, Control and Data Acquisition) system [27]. 

Farmers can monitor the status of their crops, receive alerts, and adjust farming practices, as necessary. 

• Smart Actuators: Based on the results of data analysis and system recommendations, smart actuators can 

be activated, such as automated irrigation systems, application of fertilizers or pesticides, and temperature, 

and humidity control in greenhouses, among others [28]. These actuators can be controlled remotely or 

through instructions based on predefined rules. 

The workflow of the proposed system can be summarized as follows: 

1. Sensors collect real-time data from the field. 

2. Data is transmitted through the sensor network to the IoT gateway. 

3. The IoT gateway sends the data to the cloud platform. 

4. AI models in the cloud analyze data and generate recommendations. 

5. Recommendations and analysis results are displayed in the control and monitoring system. 

6. Smart actuators are activated based on farmers' recommendations and instructions. 

This integrated approach of IoT, AI, and sensor networks allows highly automated and data-driven 

precision agriculture, leading to more efficient management of resources and increased yields. 

 

2. METHODS 

The development of the crop forecasting system was conducted through a systematic approach that 

included several phases, from the conception and design of the system architecture to the implementation and 

evaluation of the predictive models. Each phase was crucial to ensure the system met the specific requirements 

of the greenhouse environment and provided accurate and useful forecasts. Each of the steps followed in this 

process is detailed below. 

2.1. System Architecture Design 

The first step involved a thorough system requirements analysis, identifying critical environmental 

variables for growing tomatoes, such as temperature, relative humidity, and solar lighting. Different sensor 

models were evaluated to ensure they met the requirements for accuracy, durability, and ease of integration. 

Based on the requirements analysis, the Dragino LHT65N-E5 sensors were selected for their ability to measure 

multiple environmental variables and their compatibility with LoRa communication. The selection methods 

included a thorough evaluation of the options available on the market, considering criteria such as measurement 

accuracy, durability, energy consumption, and ease of integration with other system components. 

To determine the most appropriate type of communication, several protocols within the Internet of Things 

technology were evaluated, considering the specific conditions of the installation and the requirements of the 

project. LoRa technology was selected for its ability to provide ultra-long range spread spectrum 

communication and high immunity to interference, in addition to its low power consumption. In the proposed 

solution, each greenhouse that is monitored will have a node equipped with three sensors that measure 

temperature, humidity and solar radiation. It was decided to use the Dragino LHT65N-E5 LoRa WAN sensors, 

which measure temperature, humidity and illuminance, and are ideal for agricultural applications and smart 

cities. These sensors allow users to send data over extremely long distances, minimizing current consumption. 

In addition, its design aimed at efficient use in energy terms, with a 2400 mAh battery that can last up to 10 

years, facilitates maintenance, since the batteries are easily replaceable. 

The resolution of the temperature sensor is 0.01ºC, a tolerance of ±0.3ºC and a long-term loss of less than 

0.02ºC/year, with the measurement range being -40ºC to 80ºC. In reference to the humidity sensor, its 

resolution is 0.04%RH, with a precision of ±3%RH and a long-term loss of less than 0.02ºC/year. Its 

measurement range is between 0 and 96%RH. The external illuminance sensor is based on a BH1750 sensor, 

the cable length is 50cm, sufficient for installation in an area in which it captures the data with the greatest 

similarity to that of the plants, without being affected by the shadows in measurements. Its precision is 1lx and 

measures in a range of 0 to 65535lx, its operating temperature is between -40ºC and 85ºC. 
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Figure 1. Application diagram 

 

2.2. Deployment of Sensors and Gateways 

Before deployment, greenhouse inspections were conducted to determine optimal locations for sensors 

and gateways. Factors such as space layout, sources of interference, and accessibility for maintenance were 

considered. Dragino LHT65N-E5 sensors were installed in the selected greenhouses. Sensors were strategically 

distributed to cover all critical areas, ensuring that the data collected was representative of the overall 

greenhouse conditions. Each sensor was calibrated before installation to ensure measurement accuracy. The 

TTN gateways were installed in central locations on the agricultural sites to maximize coverage. Accounts 

were set up on The Things Network (TTN) and gateways were registered, allowing the LoRa sensors to 

automatically connect and start transmitting data. 

 

2.3. Data Collection and Storage 

Node-RED was utilized to build data pipelines, integrating sensors, gateways, and cloud infrastructure. 

This facilitated the creation of data streams from sensors to Google Cloud InfluxDB, enabling real-time 

processing and efficient data storage. The data transmitted by the sensors was received by the gateways and 

sent to the Google Cloud Platform. Node-RED processed this data, performing cleaning and transformation 

tasks before storing it in Google Cloud InfluxDB, a database optimized for time series. Retention and 

downsampling policies were implemented to manage storage costs without losing relevant data. To send data 

from TTN to Node-RED via MQTT, the following steps must be followed: 

1. Configure the inbound MQTT node to Node-RED: Start Node-RED and drag an inbound MQTT node to 

the work tab. Configure the node with the connection details provided by TTN, including the MQTT 

server URL, port, and login credentials. Specifies the MQTT topic that TTN uses to send sensor data. 

2. Configure packet decoding node: Add a Function node to the work tab and write the JavaScript code 

required to decode data packets received from TTN. Connect the input MQTT node to the function node 

so that the received data is automatically decoded. 

3. Connect to database: Drag the node corresponding to the database you are going to use (for example, 

"MySQL" or "MongoDB") to the work tab and configure the connection details, including the server 

address, the port, username, password, and database name. 

4. Store the data: Add a database insert node (for example, "MySQL insert" or "MongoDB insert") and 

specify the table or collection where the data will be stored. Connects the function node (which decodes 

the data) to the database insert node. Evaluate the configuration by sending test data from TTN to verify 

that it is received, decoded, and stored correctly in the database. 

These steps ensure that sensor data is efficiently transmitted from TTN to Node-RED, decoded and stored 

in the corresponding database for further analysis and use. 
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2.4. Development of Predictive Models 

Recurrent neural networks (RNN), specifically LSTM (Long Short-Term Memory) and GRU (Gated 

Recurrent Units), were selected for their capability to handle sequential data and make long-term predictions. 

These models are especially suitable for analyzing time series, such as environmental data collected in 

greenhouses. The collected data was structured in input/output pairs, where environmental conditions and 

meteorological data in a specific time window were associated with the expected harvest quantities for the 

following week. The data were divided into training and validation sets to evaluate the performance of the 

model. Initially, models were trained using simulated data to establish a performance baseline. Later, they were 

retrained with real data collected from the sensors. Training was conducted on Google Colab, using GPU 

acceleration to improve efficiency and reduce processing time. 

 

3. RESULTS AND DISCUSSION 

3.1. Study Results 

The model was first trained and evaluated on simulated data, achieving a mean absolute error of 12%. 

The model was then retrained using real sensor data collected from the greenhouses. With these test data, the 

model achieved a mean absolute error of 8.5%. It was decided to use simulated data initially due to the high 

temporal and financial costs associated with collecting real data. Collecting data over a year involves expensive 

deployment of nodes and the purchase and installation of equipment and without obtaining a production 

forecast. Therefore, using simulated data allows you to train the AI model from the beginning, ensuring 

performance within the admissible margins now of launch. As more empirical data is collected, the model will 

be retrained, progressively improving its accuracy without the need to wait a full year to obtain a working 

model. 

After validation, the system was deployed in real-time to assess the accuracy of ongoing harvest 

predictions. Over 16 weeks of the current crop cycle, the model showed an average error of 6.7% compared to 

actual harvest quantities. At that time, monitoring was expanded to cover 50% of the farm area, increasing 

from 29 to 43 greenhouses. With the increase in available data, precision improved markedly, reaching a mean 

error of 5.3% over 14 weeks. The best performance was achieved over 4 weeks with a mean error of only 3.2%. 

Thanks to these analyses it was possible to reduce the error of the predictions to a significant extent.  

Figure 2 shows the differences between manually estimated production and actual production data (X 

axis the week of the year and Y axis the difference between the estimate and the actual production). A 

significant improvement was observed, going from peaks in Figure 2 of more than seventy-five tons to not 

reaching four tons as a maximum in the differences between estimates on Figure 3. 

 

 
Figure 2. Graph the difference between manually estimated production and actual production 
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Figure 3. Graph the difference between estimated production with the described application and actual 

production 

 

Therefore, it is observed that the error committed with the developed application is much smaller than 

that committed by manual estimation. To know how different these data are empirically and not by observations 

of the graphs, the mean square error (1) will be calculated to be able to know empirically which one has the 

best result. 

 

𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑡̂ − 𝑌𝑡)
2𝑛

𝑡=1

𝑛
 (1) 

 

With this we obtain that the error in the manual estimation is 37139.56 and the error in the estimation 

with the developed application is 2204.78. Thus obtaining that the application greatly improves the estimation 

of production. 

At the same time, an analysis of the annual costs associated with the implementation of the system was 

conducted. This analysis demonstrated that, despite initial and operational costs, investment in IoT, AI, and 

sensor network technologies results in a significant net benefit due to improved prediction accuracy and 

resource optimization. In turn, it was considered that the first year would not generate income due to the time 

required to train the models. The evolution of income and expenses for this solution is presented in the 

following Figure 4. 

 

 
Figure 4. The comparative graph between system expenses and income generated thanks to this 
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The graph indicates that profits begin to exceed expenses from the second year onwards, with 

accumulated income of €1.608.000 and expenses of €219.523, resulting in a profit of €1.388.477. This 

projection is based on the following assumptions: the initial and annual cost of the solution, which is estimated 

at €30.500 in the first year and €29.000 in subsequent years. Furthermore, it is estimated that the proprietary 

solution, once implemented and refined, will achieve a success rate comparable to that of a much more 

expensive commercial solution, but with the additional advantage of being personalized and scalable according 

to the specific needs of the company. 

 

3.2. Cost analysis 

Regarding the costs of the project, these are associated with several key factors, including the number of 

sensors necessary to install in each of the greenhouses and the number of Gateways required. In an installation 

of 86 greenhouses of varied sizes, after a detailed analysis, it was concluded that one sensor for every three 

greenhouses would be sufficient. This decision was based on the proximity of the greenhouses to each other 

and a field analysis that showed that the data from the different sensors were remarkably similar. This approach 

allows you to significantly reduce costs by minimizing the number of sensors used. The installation of 

Gateways was also optimized due to the proximity of the greenhouses. It was determined that a single Gateway, 

located in the centre of the facility, would be sufficient to cover communication for all sensors, representing 

another significant savings in infrastructure costs. 

Furthermore, it is essential to consider the costs associated with computing the prediction model. These 

costs are estimated at approximately 3000 euros due to the influence of data quality and this cost cannot be 

given a fixed value. Added to this amount are the expenses generated by the human inspection necessary to 

supervise, control and analyse the predictive models. This monitoring is crucial to guarantee the accuracy and 

effectiveness of the system, ensuring that the models are adjusted correctly and that any anomalies are detected 

and corrected in a timely manner can be seen in Table 1. 

 

Table 1. All this resulted in costs 

Item Description Quantity 
Cost per Unit 

(€) 

Total Cost 

(€) 

Sensor 
Sensors for monitoring temperature, humidity, and 

solar radiation 
29 50 1.450 

Gateway Centralized gateway for data collection 1 363 363 

Computational 

Cost 

Cloud computing for data processing and model 

training 
- - 3.000 

Human Inspection 
Manual inspection and control of predictive 

models (5h/day) 
- - 20.000 

Total    24.813 

 

3.3. Discussion 

The results obtained in this study demonstrate the potential of integrating technologies such as the Internet 

of Things (IoT), artificial intelligence (AI), and sensor networks for the successful implementation of precision 

agriculture, which is in line with previous research [1],[5],[7],[29]. By leveraging real-time data collected by 

IoT sensors and analyzing it using machine learning techniques such as recurrent neural networks (RNN), the 

system was able to generate accurate predictions on weekly harvest volumes. This approach allows informed 

decision-making and the implementation of tailored agricultural practices for each greenhouse or growing 

zone, aligning with benefits reported in other studies [2],[9],[30]. By having reliable forecasts, farmers can 

optimize production planning, resource management, and marketing strategies, thereby reducing the risks of 

over- or under-supply. 

In addition to crop forecasting, the system architecture based on IoT, AI, and sensor networks lays the 

foundation for exploring other innovative applications in precision agriculture, such as yield optimization, 

automated irrigation, and pest detection [3],[4],[22],[27],[31]. For example, fine-tuning factors such as 

irrigation, fertilization, and pesticide application could be achieved by analyzing sensor data and implementing 

machine learning algorithms, as has been demonstrated in previous studies [32][33]. Integrating computer 

vision and deep learning techniques could significantly enhance early detection of pests and diseases in crops 

[6],[31]. By identifying and addressing these issues promptly, yield losses can be minimized, and pesticide use 

reduced, benefiting both productivity and environmental sustainability, in line with previous research findings 

[8],[34]. 

Overall, the results obtained in this study support the adoption of precision agriculture approaches driven 

by technologies such as IoT, AI, and sensor networks, which is consistent with the trends and perspectives 

reported in the literature [1],[5],[30]. These technologies allow for the collection and analysis of substantial 
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amounts of data, facilitating informed decision-making and the implementation of situation-specific 

agricultural practices. As these technologies continue to advance and become further integrated into 

agriculture, it is expected that significant improvements in productivity, resource use efficiency, and 

environmental sustainability will be achieved, as has been suggested in other studies [2],[7],[23],[35],[36]. 

 

4. Conclusion 

The study presented demonstrates that the integration of technologies such as the Internet of Things (IoT), 

Artificial Intelligence (AI), and sensor networks, as expected in the introduction, resulted in an effective system 

for crop prediction in tomato crops. The results obtained in the "Results and Discussion" chapter validate the 

ability of the proposed approach to generate accurate predictions on weekly harvest volumes, with a mean error 

of only 3.2% in the best four-week period. 

These findings confirm the potential of precision agriculture driven by real-time data and machine 

learning techniques, which is in line with the expectations initially raised. In addition to harvest predictions, 

the developed system lays the foundation for exploring other innovative applications, such as yield 

optimization, automated irrigation, and early detection of pests and diseases. 

Regarding future development prospects, it is anticipated that as IoT, AI, and sensor network technologies 

continue to advance and become further integrated into agriculture, a greater impact will be achieved on 

productivity, efficiency in the use of resources, and environmental sustainability. These technological advances 

will allow for more informed decision-making and the implementation of highly personalized agricultural 

practices for each specific situation. 

Furthermore, the results obtained in this study open new opportunities for future research, Such as the 

exploration of deep learning techniques for image analysis and pest detection. By utilizing convolutional neural 

networks (CNNs) and other sophisticated models, it is possible to develop systems that can automatically 

identify and classify pests and diseases in crops from images. This approach could lead to faster and more 

accurate detection, enabling farmers to take timely actions to protect their crops, thereby increasing yields and 

reducing losses. The integration of artificial vision systems for crop monitoring. Artificial vision systems can 

revolutionize crop monitoring by providing continuous and automated surveillance of agricultural fields. These 

systems can be integrated with drones or fixed cameras to capture high-resolution images and videos of crops. 

By analyzing these visuals, artificial vision systems can monitor plant growth, health, and detect any 

abnormalities or stress factors. This integration can provide real-time insights and data-driven decisions, 

leading to better crop management and optimized use of resources. The development of optimization 

algorithms for the efficient management of resources such as water and fertilizers. Efficient management of 

resources such as water, fertilizers, and pesticides are crucial for sustainable agriculture. Future research could 

develop advanced optimization algorithms that utilize data from various sensors and environmental conditions 

to create precise and efficient resource management plans. These algorithms can help in determining the 

optimal amount and timing of resource application, reducing waste, and enhancing crop productivity. By 

integrating these algorithms with IoT systems, farmers can achieve significant cost savings and promote 

environmentally friendly practices. 

Precision agriculture holds significant potential for improving the sustainability and efficiency of farming 

practices. Environmentally, it promotes resource conservation, soil health, biodiversity, carbon footprint 

reduction, and climate adaptation. By optimizing the use of resources such as water, fertilizers, and pesticides, 

precision agriculture minimizes waste and reduces chemical runoff, preserving natural ecosystems. 

Additionally, the use of advanced monitoring and forecasting systems allows farmers to better adapt to 

changing climate conditions, enhancing resilience and reducing crop losses due to extreme weather events. 

Socially, precision agriculture offers economic benefits, requires new skills and knowledge, impacts 

employment, raises issues of social equity, and contributes to rural development. It can increase farm 

profitability by improving crop yields and reducing input costs, particularly benefiting small and medium-sized 

farmers. However, the implementation of these technologies necessitates training and education, presenting 

both a barrier and an opportunity for agricultural education. While automation may reduce the demand for 

manual labor, it creates new job opportunities in technology-related fields. Ensuring equitable access to 

precision agriculture technologies and managing the transition in the labor market are crucial for maximizing 

the benefits and supporting the development of rural communities. 

In summary, the research presented demonstrates the transformative potential of precision agriculture 

driven by technologies such as IoT, AI, and sensor networks, and lays the foundation for future research and 

applications in this constantly evolving field. Since, this type of agriculture allows for better production 

forecasts, which allows for less food waste since the amount produced by a facility is known in advance. 
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5. Challenges and Limitations 

Despite the promising results and future research opportunities, this study also presents several challenges 

and limitations that must be considered: 

• Data Availability Limitations. The quality and quantity of available data are crucial for training AI models 

and making accurate decisions. However, obtaining high-quality data in sufficient quantities can be 

challenging. Data availability limitations can result from restrictions on sensor access, technical issues, 

and environmental variability that can affect consistent data collection. 

• Implementation and Maintenance Costs. The cost of implementing and maintaining monitoring systems 

and optimization algorithms can be significant. Sensors, gateways, and cloud infrastructure have high 

initial costs, along with recurring maintenance and upgrade expenses. These costs can be prohibitive for 

small agricultural operations, limiting the widespread adoption of these technologies. 

• Technical and Integration Challenges. Integrating diverse technologies like IoT, AI, and computer vision 

systems presents considerable technical challenges. Ensuring the interoperability of different devices and 

platforms, managing large volumes of data, and requiring a robust network infrastructure are some of the 

technical obstacles that need to be overcome. Additionally, implementing these technologies requires 

specialized skills and may face resistance due to unfamiliarity with new technologies. 

• Sensor Sensitivity and Precision. The accuracy and reliability of sensors used in crop monitoring can 

vary, affecting the quality of collected data. Factors such as extreme weather conditions, equipment wear, 

and improper calibration can impact sensor performance. Developing robust, high-precision sensors is 

crucial to ensure that the data is dependable and useful for decision-making. 

• Ethical and Privacy Considerations. Using advanced technologies in agriculture also raises ethical and 

privacy concerns. Data collection and usage must be conducted ethically, ensuring farmers' data privacy 

and preventing misuse of information. Establishing clear and transparent data management policies and 

ensuring farmers understand and consent to the use of their data is essential. 

Addressing these challenges and limitations is essential to maximize the positive impact of advanced 

technologies in agriculture. Overcoming data, cost, technical, sensor precision, and ethical barriers will allow 

more effective and widespread implementation of these innovations, leading to more sustainable and efficient 

agriculture. 
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