Support Vector Regression optimization with Particle Swam Optimization algorithm for predicting the gold prices

Authors

  • Novi Selviani Universitas Ahmad Dahlan
  • Joko Purwadi Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/bamme.v3i2.9561

Keywords:

Particle Swam Optimization, Prediction, Support Vector Regression

Abstract

This paper discusses about how to predict the gold prices from 1 January 2021 to 31 January 2023. The method used in this study is the Support Vector Regression (SVR) technique, method that was developed from the support vector machine which is used as regression approach to predict future event. From the past study already know that SVR had limitation in achieving good performance because of its sensitivity to parameters. To overcome the SVR performance problems, an optimization algorithm is proposed in this study. The PSO algorithm is applied in this study to optimize the parameters of the SVR method. The results showed that the prediction of the SVR model obtained an MSE value of 0.0035744. While in the SVR model with the PSO algorithm, the MSE value is 0.0033058.

References

Alaidi, A. H. M., Alairaji, R. M., Alrikabi, H. T. S., Aljazaery, I. A., & Abbood, S. H. (2022). Dark Web Illegal Activities Crawling and Classifying Using Data Mining Techniques. Int. J. Interact. Mob. Technol., 16(10), 122–139. https://dx.doi.org/10.3991/ijim.v16i10.30209

Ali, R., Mangla, I. U., Rehman, R. U., Xue, W., Naseem, M. A., & Ahmad, M. I. (2020). Exchange rate, gold price, and stock market nexus: A quantile regression approach. Risks, 8(3), 1–16. https://dx.doi.org/10.3390/risks8030086

Ensafi, Y., Hassanzadeh, S., Zhang, G., & Shah, B. (2022). International Journal of Information Management Data Insights Time-series forecasting of seasonal items sales using machine learning – A comparative analysis. Int. J. Inf. Manag. Data Insights, 2(1), 100058. https://dx.doi.org/10.1016/j.jjimei.2022.100058

Khaire, U. M., & Dhanalakshmi, R. (2022). .Stability of feature selection algorithm: A review. J. King Saud Univ. Comput. Inf. Sci., 34(4), 1060–1073. https://dx.doi.org/10.1016/j.jksuci.2019.06.012

Kim, M., Lee, J., Lee, C., & Jeong, J. (2022). Framework of 2D KDE and LSTM-Based Forecasting for Cost-Effective Inventory Management in Smart Manufacturing. Appl. Sci., 12(5). https://dx.doi.org/10.3390/app12052380

Kusumawati, Y., Widyatmoko, K., & Irawan, C. (2022). Gold Price Prediction Using Support Vector Regression. J. Appl. Intell. Syst., 7(1), 89–102. https://dx.doi.org/10.33633/jais.v7i1.6124

Li, J. (2022). Macro carbon price prediction with support vector regression and Paris accord targets. September 2022, 1–13.

Madani, M. A., & Ftiti, Z. (2022). Is gold a hedge or safe haven against oil and currency market movements? A revisit using multifractal approach. Ann. Oper. Res., 313(1), 367–400. https://dx.doi.org/10.1007/s10479-021-04288-6

Maori, N. A. (2017). Perbandingan Metode ANN-PSO dan ANN-GA untuk Peningkatan Akurasi Prediksi Harga Emas ANTAM. Disprotek, 8(1), 67–80.

Ngoc, T. T., Van Dai, L., & Thuyen, C. M. (2021). Support vector regression based on grid search method of hyperparameters for load forecasting. Acta Polytech. Hungarica, 18(2), 143–158. https://dx.doi.org/10.12700/APH.18.2.2021.2.8

Rico, S., Ilham, N., Irada, S., & Mangasi. (2022). The Effect of Technical Analysis on Cryptocurrency Investment Returns With the 5 ( Five ) Highest Market. Ejournal Sean Inst., 11(2), 1022–1035.

Romana, A. S. (2017). A Comparative Study of Different Machine Learning Algorithms for Disease Prediction. Int. J. Adv. Res. Comput. Sci. Softw. Eng., 7(7), 172. https://dx.doi.org/10.23956/ijarcsse/v7i7/0177

Setyowibowo, S., As’ad, M., Sujito, S., & Farida, E. (2022). Forecasting of Daily Gold Price using ARIMA-GARCH Hybrid Model. J. Ekon. Pembang., 19(2), 257–270. https://dx.doi.org/10.29259/jep.v19i2.13903

Syahri, A. & Robiyanto, R. (2020). The correlation of gold, exchange rate, and stock market on Covid-19 pandemic period. J. Keuang. dan Perbank., 24(3), 350–362. https://dx.doi.org/10.26905/jkdp.v24i3.4621

Tanveer, M., Rajani, T., Rastogi, R., Shao, Y. H., & Ganaie, M. A. (2022). Comprehensive review on twin support vector machines. Ann. Oper. Res. https://dx.doi.org/10.1007/s10479-022-04575-w

Vasista, K. (2022). Types and Risks Involved Towards Investing in Mutual Funds. Int. J. Curr. Sci., 12(1), 2250–1770.

Zhang, H. (2022). Unravelling the synergy of oxygen vacancies and gold nanostars in hematite for the electrochemical and photoelectrochemical oxygen evolution reaction. Nano Energy, 94(January), 106968. https://dx.doi.org/10.1016/j.nanoen.2022.106968

Downloads

Published

2023-12-29

Issue

Section

Articles