The Zero-Sum Discrete-Time Feedback Linear Quadratic Dynamic Game: From Two-Player Case to Multi-Player Case

Authors

  • Muhammad Wakhid Musthofa UIN Sunan Kalijaga
  • Jacob Engwerda Tilburg University

DOI:

https://doi.org/10.12928/bamme.v4i1.9351

Keywords:

linear quadratic dynamic game, Feedback information structure, Discrete-time, Multi-player

Abstract

The two-person zero-sum discrete-time feedback linear quadratic dynamic game is considered. A method that provides a saddle-point for the zero-sum discrete dynamic game is developed to derive a necessary and sufficient condition under which the game has a feedback saddle-point solution. Existence solutions, which are described in terms of a sequence of nonnegative definite algebraic Riccati matrices, are constructed. Next, a generalization of such a game to a multi-player case is studied. Using the results in a two-person case, the characterization of a feedback saddle-point solution for the multi-player game is derived.

References

Başar, T., & Bernhard, P. (2008). H-infinity Optimal Control and Related Minimax Design Problems: a Dynamic Game Approach. Springer Science & Business Media.

Başar, T., & Olsder, G. J. (1998). Dynamic noncooperative game theory. Society for Industrial and Applied Mathematics.

Couto, M. C., & Pal, S. (2023). Introspection dynamics in asymmetric multiplayer games. Dynamic Games and Applications, 13(4), 1256-1285, https://doi.org/10.1007/s13235-023-00525-8

Delfour, M. C. (2007). Linear quadratic differential games: Saddle point and Riccati differential equation. SIAM journal on control and optimization, 46(2), 750-774.

Engwerda, J. (2005). LQ dynamic optimization and differential games. John Wiley & Sons.

Garcia, E., Casbeer, D. W., Pachter, M., Curtis, J. W., & Doucette, E. (2020, July). A two-team linear quadratic differential game of defending a target. In 2020 American Control Conference (ACC) (pp. 1665-1670). IEEE.

Gokhale, C. S., & Traulsen, A. (2014). Evolutionary multi-player games. Dynamic Games and Applications, 4, 468-488.

Jank, G. and Kun, G. Optimal Control of Disturbed Linear-Quadratic Differential Games, European Journal of Control, Volume 8, Issue 2, 2002, Pages 152-162

Kebriaei, H., & Iannelli, L. (2017). Discrete-time robust hierarchical linear-quadratic dynamic games. IEEE Transactions on Automatic Control, 63(3), 902-909.

Köpf, F., Inga, J., Rothfuß, S., Flad, M., & Hohmann, S. (2017). Inverse reinforcement learning for identification in linear-quadratic dynamic games. IFAC-PapersOnLine, 50(1), 14902-14908.

Lukes, D. L., & Russell, D. L. (1971). A global theory for linear-quadratic differential games. Journal of Mathematical Analysis and Applications, 33(1), 96–123.

Mahajan, A., Samvelyan, M., Gupta, T., Ellis, B., Sun, M., Rocktäschel, T., & Whiteson, S. (2022). Generalization in cooperative multi-agent systems. arXiv preprint arXiv:2202.00104.

Mazumdar, E., Ratliff, L. J., Jordan, M. I., & Sastry, S. S. (2019). Policy-gradient algorithms have no guarantees of convergence in linear quadratic games—arXiv preprint arXiv:1907.03712.

Moon, J., & Başar, T. (2016). Linear quadratic risk-sensitive and robust mean field games. IEEE Transactions on Automatic Control, 62(3), 1062-1077.

Musthofa, M. W., Salmah, , Engwerda, J. C., & Suparwanto, A. (2013). Feedback saddle point equilibria for soft-constrained zero-sum linear quadratic descriptor differential game. Archives of Control Sciences, 23(4), 473-493.

Musthofa, M. W., Engwerda, J., & Suparwanto, A. (2016). Robust Optimal Control Design Using a Differential Game Approach for Open-Loop Linear Quadratic Descriptor Systems. Journal of Optimization Theory and Applications, 168(3), 1046-1064.

Musthofa, M. W. (2021). The Open-Loop Zero-Sum Linear Quadratic Index One Discrete-Time Soft-Constrained Descriptor Dynamic Games. Journal of Mathematical Control Science and Applications, 7(1), 1 – 10.

Omidshafiei, S., Tuyls, K., Czarnecki, W. M., Santos, F. C., Rowland, M., Connor, J., & Munos, R. (2020). Navigating the landscape of multi-player games. Nature communications, 11(1), 5603.

Pachter, M., & Pham, K. D. (2010). Discrete-time linear-quadratic dynamic games. Journal of Optimization Theory and Applications, 146, 151-179.

Ratliff, L. J., Coogan, S., Calderone, D., & Sastry, S. S. (2012, October). Pricing in linear-quadratic dynamic games. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1798-1805). IEEE.

Van Den Broek, W. A., Engwerda, J. C., & Schumacher, J. M. (2003). Robust equilibria in indefinite linear-quadratic differential games. Journal of Optimization Theory and Applications, pp. 119, 565–595.

Wu, J. (2023). Learning Zero-Sum Linear Quadratic Games with Improved Sample Complexity and Last-Iterate Convergence (Master's thesis).

Xu, H., & Mukaidani, H. (2003). The linear quadratic dynamic game for discrete-time descriptor systems. International Game Theory Review, 5(04), 361-374.

Xu, R. and Wu, T., Risk-sensitive large-population linear-quadratic-Gaussian games with major and minor agents, Asian J Control (2023), 1–13, DOI 10.1002/asjc.3106.

Yu, C., Li, Y., Li, S., & Chen, J. (2022). Inverse linear quadratic dynamic games using partial state observations. Automatica, 145, 110534.

uz Zaman, M. A., Miehling, E., & Başar, T. (2023). Reinforcement learning for non-stationary discrete-time linear–quadratic mean-field games in multiple populations. Dynamic Games and Applications, 13(1), 118-164.

Zhang, K., Yang, Z., & Başar, T. (2021). Multi-agent reinforcement learning: A selective overview of theories and algorithms. Handbook of reinforcement learning and control, 321-384.

Downloads

Published

2024-06-07

Issue

Section

Articles