On Conformable, Riemann-Liouville, and Caputo fractional derivatives

Authors

  • Bambang Hendriya Guswanto Universitas Jenderal Soedirman
  • Leony Rhesmafiski Andini Universitas Jenderal Soedirman
  • Triyani Triyani Universitas Jenderal Soedirman

DOI:

https://doi.org/10.12928/bamme.v2i2.7072

Keywords:

Caputo fractional derivative, Conformable fractional derivative, Fractional ordinary differential equations, Riemann-Liouville fractional derivative, Solutions

Abstract

This article compares conformable fractional Derivative with Riemann-Liouville and Caputo fractional derivative by comparing solutions to fractional ordinary differential equations involving the three fractional derivatives via the numerical simulations of the solutions. The result shows that conformable fractional derivative can be used as an alternative to Riemann-Liouville and Caputo fractional derivative for order α with 1/2<α<1.

References

Abdeljawad, T. (2015). On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, 57-66.

Adams, E. E., & Gelhar, L. W. (1992). Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resources Research, 28(12), 3293-3307.

Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non‐Fickian transport in geological formations as a continuous time random walk. Reviews of Geophysics, 44(2), 1-49.

Hatano, Y., & Hatano, N. (1998). Dispersive transport of ions in column experiments: An explanation of long‐tailed profiles. Water Resources Research, 34(5), 1027-1033.

Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of computational and applied mathematics, 264, 65-70.

Kilbas, A. A., Srivastava, H. M., Trujilo, J. J. (2006). Theory and Application of Fractional Differential Equations. Elsevier.

Laffaldano, G., Caputo, M., & Martino, S. (2006). Experimental and theoretical memory diffusion of water in sand. Hydrology and Earth System Sciences, 10(1), 93-100.

Podlubny, I. (1999). Fractional Differential Equations. Academic Press.

Graph solution

Downloads

Published

2022-12-19

Issue

Section

Articles