Indonesian provincial clustering using Elbow method for the national food security during pandemic

Authors

  • Rido Trimanto Universitas Ahmad Dahlan
  • Eryka Yustari Universitas Ahmad Dahlan
  • Zulfatin Nafisah Universitas Ahmad Dahlan
  • Nona Carolina Universitas Ahmad Dahlan
  • Nursyiva Irsalinda Universitas Ahmad Dahlan
  • Arifah Indah Setyorini Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.12928/bamme.v2i2.6166

Keywords:

Elbow method, National food security, Provincial clustering, Pandemic

Abstract

The Covid-19 pandemic had an impact on the joints of socio-economic life, especially in fulfilling the basic needs. It also caused the declining of global food security, especially in Indonesia. This study aims to develop regional mapping to determine food security priorities and to achieve equal distribution of food security throughout Indonesia. The research method used in this research is quantitative research with the Elbow method. The Elbow method is used to find the optimal cluster size. The data used are from the Food Security Agency of the Indonesian Ministry of Agriculture and Central Statistics Agency in a range of 2020 to 2021. In the process to identify priority areas in Indonesia, it is necessary to have provincial clustering. It is also necessary to minimize food budget allocations that are not well-targeted, causing losses, and not achieving an equal distribution of food security programs. Looking from a more visionary perspective, the success of clustering provides an opportunity for the government to focus more on allocating budget, resources, and time according to the results of the clustering. Based on the results of the provincial clustering, two clusters were obtained, namely provinces with high food security (Cluster 1) and low food security (Cluster 2). Cluster 1 has lower constituent components than Cluster 2.

Author Biography

Nursyiva Irsalinda, Universitas Ahmad Dahlan

Program Studi Matematika

SCOPUS ID: 57192984454

References

Asmanto, P., Adji, A., & Sutikno. (2020). Menjaga Ketahanan Pangan di Tengah Pandemi Covid-19. Sekretariat Tim Nasional Percepatan Penanggulangan Kemiskinan. http://tnp2k.go.id/download/92111PB8%20Ketahanan%20PanganFA-Jul2020.pdf.

Aulia, S. (2020). Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja). Djtechno: Jurnal Teknologi Informasi, 1(1), 1-5.

Ayinde, I. A., Otekunrin, O. A., Akinbode, S. O., & Otekunrin, O. A. (2020). Food security in Nigeria: impetus for growth and development. Journal of Agricultural Economics and Rural Development, 6(2), 808-820.

Destianto, R., & Pigawati, B. (2014). Analisis keterkaitan perubahan lahan pertanian terhadap ketahanan pangan Kabupaten Magelang berbasis model Spatio Temporal Sig. Geoplanning: Journal of Geomatics and Planning, 1(1), 21–32.

Hirawan, F. B., & Verselita, A. A. (2020). Kebijakan pangan di masa pandemi Covid-19 (pp. 1-7). CSIS Indonesia.

Khormarudin, A. N. (2016). Teknik data mining: Algoritma K-Means clustering. Jurnal Ilmu Komputer, 1–12.

Klassen, S., & Murphy, S. (2020). Equity as both a means and an end: Lessons for resilient food systems from COVID-19. World Development, 136, 105104.

Masniadi, R., Angkasa, M. A. Z., Karmeli, E., & Esabella, S. (2020). Telaah kritis ketahanan pangan Kabupaten Sumbawa dalam menghadapi pandemi Covid-19. Indonesian Journal of Social Sciences and Humanities, 1(2), 109-120.

Metisen, B. M., & Sari, H. L. (2015). Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila. Jurnal Media Infotama, 11(2).

Ogbuabor, G., & Ugwoke, F. N. (2018). Clustering algorithm for a healthcare dataset using silhouette score value. International Journal of Computer Science & Information Technology, 102(2), 27-37.

Pinstrup-Andersen, P. (2009). Food security: definition and measurement. Food Security, 1(1), 5–7.

Sari, R. Y., Oktavianto, H., & Sulistyo, H. W. (2022). Algoritma K-Means Dengan Metode Elbow Untuk Mengelompokkan Kabupaten/Kota Di Jawa Tengah Berdasarkan Komponen Pembentuk Indeks Pembangunan Manusia. Jurnal Smart Teknologi, 3(2), 104-108.

Sucipto, A. (2019). Klasterisasi Calon Mahasiswa Baru Menggunakan Algoritma K-Means. Jurnal Science Tech, 5(2), 50-56.

Syauqi, A. (2020). Jalan Panjang COVID-19 (Sebuah refleksi dikala wabah merajalela berdampak pada perokonomian). JKUBS, 1(1), 1-19.

Wakhidah, N. (2010). Clustering menggunakan k-means algorithm. Jurnal Transformatika, 8(1), 33-39.

Wulandani, B. R. D., & Anggraini, W. (2020). Food estate sebagai ketahanan pangan di tengah pandemi covid-19 di Desa Wanasaba. SELAPARANG Jurnal Pengabdian Masyarakat Berkemajuan, 4(1), 386-390.

Yuliana (2020). Corona virus diseases (Covid-19): Sebuah tinjauan literatur. Wellness and Healthy Magazine, 2(1), 187-192.

Provincial clustering

Downloads

Published

2022-12-15

Issue

Section

Articles