Face pattern recognition using Expectation-Maximization (EM) algorithm

Authors

  • Joko Purwadi Universitas Ahmad Dahlan
  • Julan Hernadi Universitas Ahmad Dahlan
  • M. Danang Suryantoro Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/bamme.v2i1.5520

Keywords:

Data analysis, Expectation-Maximization, Face pattern recognition

Abstract

This paper discuss about the use face patteren recognition which is now days become popular especialy on smartphone lock screen system. The method used in this research are the Expectation – Maximization (EM) Algorithm. EM Algorithm is an iterative optimization method for the estimation of Maximum Likelihood (ML) which is used in incomplete data problems.  there are 2 stages, namely the Expectation stage E (E-step) and the Maximization stage M (M-step).  These two stages will continue to be carried out until they reach a convergent value. The result of the research shows that EM Algorthm produce high accuracy, it’s about 95% on the data training and 83% accuracy on the data testing.

References

Balafar, M. A. (2013). Fast and Robust Gaussian Mixture Model for MRI Brain Image Segmentation. International Journal on Technical and Physical Problems of Engineering (IJTPE), 15, 8-14.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd edition). New York: Wiley.

Rujirakul, K., So-In, C., & Arnonkijpanich, B. (2014). PEM-PCA: A Parallel Expectation-Maximization PCA Face Recognition Architecture. The Scientific World Journal, 468176.

Schuermann, J. (1996). Pattern Classification: A Unified View of Statistical and Neural Approaches. Hoboken: Wiley & Sons.

Sianipar, W. H. G. (2017). Komparasi Metode EM-GMM (Expectation Maximization-Gaussian Mixture Model) dan FCM (Fuzzy C-Means) dalam Segmentasi Citra Otak MRI (Magnetic Resonance Imaging) di RSUD Soetomo dalam Menentukan Area Tumor Otak. Doctoral dissertation. Surabaya: Institut Teknologi Sepuluh Nopember.

Tito, Y. A. B. (2014). Segmentasi Area Tumor pada Citra CT Scan Tumor Otak Menggunakan Metode K-Means Clustering. Doctoral dissertation. Riau: Universitas Islam Negeri Sultan Syarif Kasim.

Yang, M. H., Ahuja, N., & Kriegman, D. (1999). Face detection using a mixture of factor analyzers. In Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348) (Vol. 3, pp. 612-616). IEEE.

Zarpak, B. & Rahman, F. (2008). Image Segmentation Using Gaussian Mixture Models. IUST International Journal of Engineering Science, 19(1-2), 29-32.

Face recognition

Downloads

Published

2022-05-18

Issue

Section

Articles