Describing students' mathematical power: Do cognitive styles make any difference?
DOI:
https://doi.org/10.12928/bamme.v1i1.3856Keywords:
cognitive style, impulsive, mathematical power, reflectiveAbstract
Mathematical competence refers to the skills of students in reasoning, connection, communication, representation, and problem-solving. Various researchers have massively discussed on how to foster mathematical competence. However, it is just a few of them comprehensively explain from the cognitive styles perspective. This research aims to measure the junior high school students’ mathematical competence based on their cognitive style.This research used a descriptive qualitative approach. There were 35 students took part in the mapping of cognitive styles using the Matching Familiar Figure Test and were then selected representative from the reflective and the impulsive cognitive style to have a further assessment of the mathematical competence using the mathematical competence test. The data analysis used the model of Milles and Huberman. The results showed that there was a difference mathematical competence between the subject having impulsive cognitive style and the one having reflective cognitive style. The percentage of mathematical competence of reflective subject was 69% while the impulsive subject was 56.89%. From all aspects of mathematical competence, the reflective subject tends better ability; for instance, the reflective subject has better ability than the impulsive subject on mathematical connection, mathematical reasoning, mathematical representation, and problem-solving.References
Amimah, H. S. & Fitriyani, H. (2017). Level berpikir siswa SMP bergaya kognitif refleksif dan impulsif menurut teori van Hiele pada materi segitiga. Proceeding in National Seminar on Education, Science, and Technology 2017, 133–138. Semarang: Universitas Muhammadiyah Semarang.
Apriyanti, S. & Fitriyani, H. (2017). Teori van Hiele: Tingkat berpikir siswa SMP bergaya kognitif refleksif dan impulsif pada materi segiempat. Proceeding in National Seminar on Education, Science, and Technology 2017, 364–370. Semarang: Universitas Muhammadiyah Semarang.
Bruner, J. S., & Kenney, H. J. (1965). Representation and mathematics learning. Monographs of the Society for Research in Child Development, 30(1), 50–59.
Fitriyani, H. & Khasanah, U. (2016). Analisis kesalahan Newman (NEA) pada pemecahan masalah geometri mahasiswa ditinjau dari gaya kognitif. Proceeding in National Seminar on Mathematics Education 2016. Surabaya: Universitas Negeri Surabaya.
Fitriyani, H., & Khasanah, U. (2017). Student's rigorous mathematical thinking based on cognitive style. Journal of Physics: Conference Series, 943(1), 012055.
Hendroanto, A., Budayasa, I. K., Abadi, A., Van Galen, F., & Van Eerde, H. A. A. (2015). Supporting Students' Spatial Ability in Understanding Three-Dimensional Representation. Proceeding the Third South East Asia Design/Development Research (SEA-DR) International Conference 2015, 124–134. Palembang: Sriwijaya University.
Milles B. M., Huberman, A. M., & Saldana, J. (2014). Qualitative data analysis: An expanded sourcebook. Los Angeles: SAGE Publications.
NCTM. (2000). Principles and Standards for School Mathematics. Reston: NCTM.
Prihastanto, A. R., & Fitriyani, H. (2017). Profil kemampuan koneksi matematis siswa SMP yang bergaya kognitif reflektif-impulsif dalam menyelesaikan soal geometri. Jurnal Didaktika, 23(2), 89–98.
Panasuk, R. M. (2011). Taxonomy for assessing conceptual understanding in Algebra using multiple representations. College Student Journal, 45(2), 219–232.
Jacobs, J. K., Hiebert, J., Givvin, K. B., Hollingsworth, H., Garnier, H., & Wearne, D. (2006). Does eighth-grade mathematics teaching in the United States align with the NCTM standards? Results from the TIMSS 1995 and 1999 video studies. Journal for Research in Mathematics Education, 37(1), 5–32.
Ramlah, R., Firmansyah, D., & Zubair, H. (2015). Pengaruh Gaya belajar dan keaktifan siswa terhadap prestasi belajar matematika (Survey pada SMP Negeri di Kecamatan Klari Kabupaten Karawang). Majalah Ilmiah SOLUSI, 1(3).
Rozencwajg, P., & Corroyer, D. (2005). Cognitive processes in the reflective–impulsive cognitive style. The Journal of Genetic Psychology, 166(4), 451–463.
Setyawan, F. (2017). Visualizer's representation in functions. Journal of Physics: Conference Series, 943(1), 012058.
Sugilar, H. (2017). Kompetensi matematis mahasiswa Program Studi Pendidikan Matematika. Jurnal JNPM, 1(1).
Sumarmo, U. (2010). Berfikir dan disposisi matematik: Apa, mengapa, dan bagaimana dikembangkan pada peserta didik. Bandung: FPMIPA UPI.
Ulya, H. (2015). Hubungan gaya kognitif dengan kemampuan pemecahan masalah matematika siswa. Jurnal Konseling GUSJIGANG, 1(2).
Usodo, B. (2011). Profil intuisi mahasiswa dalam memecahkan masalah matematika ditinjau dari gaya kognitif field dependent dan field independent. Paper presented at Nasional Seminar on Mathematics and Mathematics Education (pp. 95–102). Surakarta: Universitas Negeri Sebelas Maret.
Warli. (2013). Kreativitas siswa SMP yang bergaya kognitif reflektif atau impulsif dalam memecahkan masalah geometri. Jurnal Pendidikan dan Pembelajaran, 20(2), 190–201.
Warli. (2010). Matching Familiar Figure Test (MFFT). Unpublished paper. Surabaya: Universitas Negeri Surabaya.
Witkin, H. A. (1973). The Role of Cognitive Style in Academic Performance and in Teacher-Student Relations. New Jersey: Educational Testing Service.
Apriyanti, S. & Fitriyani, H. (2017). Teori van Hiele: Tingkat berpikir siswa SMP bergaya kognitif refleksif dan impulsif pada materi segiempat. Proceeding in National Seminar on Education, Science, and Technology 2017, 364–370. Semarang: Universitas Muhammadiyah Semarang.
Bruner, J. S., & Kenney, H. J. (1965). Representation and mathematics learning. Monographs of the Society for Research in Child Development, 30(1), 50–59.
Fitriyani, H. & Khasanah, U. (2016). Analisis kesalahan Newman (NEA) pada pemecahan masalah geometri mahasiswa ditinjau dari gaya kognitif. Proceeding in National Seminar on Mathematics Education 2016. Surabaya: Universitas Negeri Surabaya.
Fitriyani, H., & Khasanah, U. (2017). Student's rigorous mathematical thinking based on cognitive style. Journal of Physics: Conference Series, 943(1), 012055.
Hendroanto, A., Budayasa, I. K., Abadi, A., Van Galen, F., & Van Eerde, H. A. A. (2015). Supporting Students' Spatial Ability in Understanding Three-Dimensional Representation. Proceeding the Third South East Asia Design/Development Research (SEA-DR) International Conference 2015, 124–134. Palembang: Sriwijaya University.
Milles B. M., Huberman, A. M., & Saldana, J. (2014). Qualitative data analysis: An expanded sourcebook. Los Angeles: SAGE Publications.
NCTM. (2000). Principles and Standards for School Mathematics. Reston: NCTM.
Prihastanto, A. R., & Fitriyani, H. (2017). Profil kemampuan koneksi matematis siswa SMP yang bergaya kognitif reflektif-impulsif dalam menyelesaikan soal geometri. Jurnal Didaktika, 23(2), 89–98.
Panasuk, R. M. (2011). Taxonomy for assessing conceptual understanding in Algebra using multiple representations. College Student Journal, 45(2), 219–232.
Jacobs, J. K., Hiebert, J., Givvin, K. B., Hollingsworth, H., Garnier, H., & Wearne, D. (2006). Does eighth-grade mathematics teaching in the United States align with the NCTM standards? Results from the TIMSS 1995 and 1999 video studies. Journal for Research in Mathematics Education, 37(1), 5–32.
Ramlah, R., Firmansyah, D., & Zubair, H. (2015). Pengaruh Gaya belajar dan keaktifan siswa terhadap prestasi belajar matematika (Survey pada SMP Negeri di Kecamatan Klari Kabupaten Karawang). Majalah Ilmiah SOLUSI, 1(3).
Rozencwajg, P., & Corroyer, D. (2005). Cognitive processes in the reflective–impulsive cognitive style. The Journal of Genetic Psychology, 166(4), 451–463.
Setyawan, F. (2017). Visualizer's representation in functions. Journal of Physics: Conference Series, 943(1), 012058.
Sugilar, H. (2017). Kompetensi matematis mahasiswa Program Studi Pendidikan Matematika. Jurnal JNPM, 1(1).
Sumarmo, U. (2010). Berfikir dan disposisi matematik: Apa, mengapa, dan bagaimana dikembangkan pada peserta didik. Bandung: FPMIPA UPI.
Ulya, H. (2015). Hubungan gaya kognitif dengan kemampuan pemecahan masalah matematika siswa. Jurnal Konseling GUSJIGANG, 1(2).
Usodo, B. (2011). Profil intuisi mahasiswa dalam memecahkan masalah matematika ditinjau dari gaya kognitif field dependent dan field independent. Paper presented at Nasional Seminar on Mathematics and Mathematics Education (pp. 95–102). Surakarta: Universitas Negeri Sebelas Maret.
Warli. (2013). Kreativitas siswa SMP yang bergaya kognitif reflektif atau impulsif dalam memecahkan masalah geometri. Jurnal Pendidikan dan Pembelajaran, 20(2), 190–201.
Warli. (2010). Matching Familiar Figure Test (MFFT). Unpublished paper. Surabaya: Universitas Negeri Surabaya.
Witkin, H. A. (1973). The Role of Cognitive Style in Academic Performance and in Teacher-Student Relations. New Jersey: Educational Testing Service.
Downloads
Published
2021-03-24
Issue
Section
Articles
License
Copyright (c) 2021 Harina Fitriyani, Fariz Setyawan, Aan Hendroanto, Vita Istihapsari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).