Shopping pattern segmentation: HAC versus K-Means performance analysis

Authors

  • Nur Arina Hidayati Universitas Ahmad Dahlan
  • Uswatun Khasanah Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/bamme.v5i2.14502

Keywords:

consumer analytics, clustering technique, HAC, K-Means

Abstract

Despite widespread use in consumer analytics, clustering techniques remain underutilized for analyzing household basic food commodity consumption patterns, particularly for developing localized retail strategies and targeted food security policies in resource-constrained contexts. This study addresses this practical gap by systematically comparing Hierarchical Agglomerative Clustering (HAC) and K-Means performance on essential consumption patterns across seven commodities: bread, vegetables, fruit, meat, poultry, milk, and wine. Using dual validation metrics, Silhouette Coefficient and Davies-Bouldin Index, we evaluate clustering effectiveness specifically for small-scale household datasets typical of regional food policy environments. HAC demonstrated superior cluster stability (Silhouette score = 0.2936, DBI = 0.8977) compared to K-Means (0.2912, 0.9871), enabling identification of three actionable consumption segments, namely budget-conscious households with economical protein consumption, high spender households with premium patterns across categories, and balanced/selective households preferring bread and wine. These empirically-derived segments provide implementable frameworks for food subsidy targeting, inventory optimization in local retail contexts, and nutrition intervention program design. The findings demonstrate that methodologically rigorous clustering analysis yields policy-relevant household segmentation even with constrained data, offering practical guidance for evidence-based food security interventions where basic commodity consumption directly informs resource allocation decisions.

References

Apriyanto, B., & Sitio, S. L. M. (2025). Penerapan K-Means dalam menganalisis pola pembelian pelanggan pada data transaksi e-commerce. Bit-Tech, 7(3), 790–797. https://doi.org/10.32877/bt.v7i3.2195

Fatrilia, E. I., Safaat, I., Maharani, E., & Rihastuti, S. (2023). Segmentasi konsumen berdasarkan pola pembeli dengan sistem cluster. Seminar Nasional AMIKOM Surakarta (SEMNASA).

FAO. (2006). Food Security Policy Brief, Issue 2. Food and Agriculture Organization.

Hadley, C., & Crooks, D. L. (2012). Coping and the biosocial consequences of food insecurity in the 21st century. American Journal of Physical Anthropology, 149(S55), 72-94

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd Edition. The Morgan Kaufmann Series in Data Management Systems.

Hidayati N. (2013). Analisis karakteristik pola belanja keluarga dengan analisis klaster. AdMathEdu, 3(1).

Jihan, A., Prihartono, W., & . F. (2025). Segmentasi konsumen di pasarmu.id menggunakan K-means clustering berdasarkan model RFM. Jurnal Informatika dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6327

Kaushik, M., & Mathur, M. B. (2014). Comparative Study of K-Means and Hierarchical Clustering Techniques. International Journal of Software & Hardware Research in Engineering, 2(6), 93-98.

Kennedy, G., Ballard, T., & Dop, M. C. (2011). Guidelines for measuring household and individual dietary diversity. FAO.

Lebart, L., Morineau, A., & Fénelon, J.-P. (1982). French food data: Average expenditures on food for several different types of families in France [data set]

Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global K-means clustering algorithm. Pattern Recognition, 36(2), 451-461.

Maulana, R., Adi Putra Pratama, D., Nugraha, N., & Rahmasari, A. (2021). Implementasi algoritma Hierarchical Clustering untuk klasterisasi data pelanggan mall. Gunung Djati Conference Series, 3.

Muhammad, A., Seale Jr, J. L., Meade, B., & Regmi, A. (2011). International evidence on food consumption patterns: An update using 2005 international comparison program data. Technical Bulletin TB-1929. U.S. Department of Agriculture.

Rahma, A. A., Faqih, A., & Rinaldi, A. R. (2025). Optimalisasi strategi pemasaran melalui segmentasi pelanggan dengan analisis RFM dan algoritma K-Means untuk bisnis ritel. JIKO (Jurnal Informatika dan Komputer), 9(2), 338. https://doi.org/10.26798/jiko.v9i2.1737

Ruel, M. T. (2003). Operationalizing dietary diversity: A review of measurement issues and research priorities. The Journal of Nutrition, 133(11), 3911S-3926S.

Safitri, H., Putri Lenggo Geni, S., Merry, F., & Wati, M. (2025). Penerapan K-Means Clustering untuk segmentasi konsumen e-commerce berdasarkan pola pembelian. JUKI : Jurnal Komputer Dan Informatika, 7.

Selim, S. Z., & Ismail, M. A. (1984). K-Means-type algorithms: A generalized convergence theorem and characterization of local optimality. In IEEE Transactions on Pattfrn Analysis and Machine Intelligence (Issue 1).

Smith, L. C., & Subandoro, A. (2007). Measuring food security using household expenditure surveys. International Food Policy Research Institute.

Siagian, R., Pratama, E., Lubis, F., Priscillia, S., & Ramadhani, F. (2025). Segmentasi pelanggan dengan K-Means untuk strategi pemasaran yang efektif. JATI Jurnal Mahasiswa Teknik Informatika, 9.

Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796

Downloads

Published

2025-10-08

Issue

Section

Articles