Multicollinearity problem-solving with Jackknife Ridge Regression: A case study on slum conditions in Bone Bolango
DOI:
https://doi.org/10.12928/bamme.v5i1.12759Keywords:
Jackknife Ridge Regression, Multicollinearity, Slum conditionsAbstract
Slum conditions in Indonesia, particularly in Gorontalo Province's Bone Bolango District, are a significant challenge to sustainable development. This research aims to identify the key factors contributing to slum conditions in the strategic economic areas of Kabila, Suwawa, and Tilongkabila using Jackknife Ridge Regression (JRR) analysis to address multicollinearity and overfitting issues. Data from the Regional Development Planning Board (BAPPEDA) Bone Bolango District's 2023 document was used, with a sample of 40 urban villages and villages. The result showed that there is a high collinearity between two independent variables, necessitating the use of JRR. The JRR model identified seven independent variables significantly related to slum value. The regression model explained 83% of the variability in slum conditions. This study provides methodological depth through the JRR framework, which enables accurate slum analysis where traditional models (like OLS) tend to fall short. It emphasizes the need for Bone Bolango to prioritize its policy initiatives by focusing on the seven independent variables. Additionally, the framework demonstrates scalability, making it adaptable to other Indonesian provinces that face similar challenges with slum data.
References
Adityaningrum, A., Ladjali, S. I., Djakaria, I., Yahya, L., Payu, M. R. F., Nashar, L. O., & Jusuf, H. (2023). Comparing Gaussian kernel and quadratic spline of nonparametric regression in modeling infectious diseases. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 17(4), 2135–2146. https://doi.org/10.30598/barekengvol17iss4pp2135-2146
Afrina, S., Fuady, Z., & Yusuf, M. A. (2021). Identifikasi faktor penyebab utama kekumuhan permukiman di Dusun Tengku Muda, Gampong Jawa, Kecamatan Kuta Raja, Kota Banda Aceh. Jurnal Ilmiah Mahasiswa Arsitektur Dan Perencanaan, 5(2), 58–64.
Annas, A., Soemitro, R. A. A., & Santoso, E. B. (2018). Analisis penentuan infrastruktur prioritas pada kawasan kumuh lingkungan kerantil Kota Blitar. Journal of Civil Engineering, 33(2), 56–67.
Arifin, C., Muhibuddin, A., & Bahri, S. (2022). Evaluasi program kotaku dalam penanganan kumuh Kota Parepare: Studi kasus Kelurahan Ujung Lare Kecamatan Soreang. Urban and Regional Studies Journal, 5(1), 28–43. https://doi.org/10.35965/ursj.v5i1.1965
Arrasyid, A. H., Ispriyanti, D., & Hoyyi, A. (2021). Metode modified Jackknife Ridge Regression dalam penanganan multikolinieritas (Studi Kasus Indeks Pembangunan Manusia Di Jawa Tengah). Jurnal Gaussian, 10(1), 104–113.
Fatihah, A. I. (2022). Penerapan Metode Jackknife Ridge Regression dalam Penanganan Multikolinearitas (Studi Kasus Tingkat Kemiskinan di Kabupaten Grobogan 2011-2021) [Universitas Islam Negeri Walisongo] https://eprints.walisongo.ac.id/id/eprint/20479/
Gobel, F. F., & Zees, E. A. T. (2022). Faktor pengaruh dalam pembentukan permukiman kumuh di Desa Pohuwato Timur. ARSITEKTURA, 20(1), 99. https://doi.org/10.20961/arst.v20i1.55383
Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55. https://doi.org/10.2307/1267351
Irawan, R. C., Nugraha, A. L., & Firdaus, H. S. (2020). Analisis tingkat kekumuhan pada permukiman menggunakan model Geographically Weighted Regression (GWR)(Studi Kasus: Kota Surakarta, Jawa Tengah). Jurnal Geodesi Undip, 9(2), 145–154.
Kabupaten Bone Bolango. (2021). Peraturan Daerah Nomor 5 Tahun 2021 tentang Rencana Tata Ruang Wilayah Kabupaten Bone Bolango Tahun 2021–2041. Pemerintah Kabupaten Bone Bolango: Bone Bolango.
Khurana, M., Chaubey, Y. P., & Chandra, S. (2014). Jackknifing the Ridge Regression Estimator: A Revisit. Communications in Statistics - Theory and Methods, 43(24), 5249–5262. https://doi.org/10.1080/03610926.2012.729640
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models. McGraw-hill.
Madrid-García, A., Merino-Barbancho, B., Rodríguez-González, A., Fernández-Gutiérrez, B., Rodríguez-Rodríguez, L., & Menasalvas-Ruiz, E. (2022). Understanding the role and adoption of artificial intelligence techniques in rheumatology research: an in-depth review of the literature. https://doi.org/10.1101/2022.11.04.22281930
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.
Najib, M. K., Fauzan, M. D., Nurdiati, S., Khoerunnisa, N., Maulia, S. D., Triwulandari, R. R. C., & Aziz, M. F. (2024). Prediksi Angka Harapan Hidup Menggunakan Regresi Linear Berganda, Lasso, Ridge, Elastic Net, dan Kuantil Lasso. Jurnal Sains Matematika Dan Statistika, 10(2). https://doi.org/10.24014/jsms.v10i2.27916
Prajamandana, A. P., Sukmono, A., & Firdaus, H. S. (2021). Analisis tingkat permukiman kumuh menggunakan geographically weighted regression semiparametric (GWRS)(Studi Kasus: Kota Bogor, Jawa Barat). Jurnal Geodesi Undip, 10(3), 41–51.
Priyono, M. S. (2021). Analisis Regresi dan Korelasi untuk Penelitian Survei (Panduan Praktis Olah Data dan Interpretasi: D. GUEPEDIA.
PUPR. (2023). Dokumen Rencana Pencegahan dan Peningkatan Kawasan Perumahan Kumuh dan Kawasan Permukiman Kumuh (RP2KPKPK) Kabupaten Bone Bolango. Kementrian Pekerjaan Umum dan Perumahan Rakyat
Qonita, C. D., & Rahmawati, D. (2021). Strategi Penanganan Pemukiman Kumuh di Area Pendukung Industri Kelurahan Krian, Kabupaten Sidoarjo. Jurnal Teknik ITS, 9(2). https://doi.org/10.12962/j23373539.v9i2.56302
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
Singh, B., Chaubey, Y. P., & Dwivedi, T. D. (1986). An almost unbiased ridge estimator. Sankhyā: The Indian Journal of Statistics, Series B, 342–346.
Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Tinungki, G. M. (2019). Orthogonal iteration process of determining K value on estimator of Jackknife ridge regression parameter. Journal of Physics: Conference Series, 1341(9), 092001. https://doi.org/10.1088/1742-6596/1341/9/092001
Winda, B. M. (2021). Penerapan metode jackknife ridge regression dalam kasus multikolinieritas pada indeks pembangunan manusia di kabupaten/kota provinsi jawa tengah [Universitas Andalas]. http://scholar.unand.ac.id/72586/
Xie, Y.-L., & Kalivas, J. H. (1997). Local prediction models by principal component regression. Analytica Chimica Acta, 348(1–3), 29–38. https://doi.org/10.1016/S0003-2670(97)00036-6
Yitshak-Sade, M., Fabian, M. P., Lane, K. J., Hart, J. E., Schwartz, J. D., Laden, F., James, P., Fong, K. C., Kloog, I., & Zanobetti, A. (2020). Estimating the Combined Effects of Natural and Built Environmental Exposures on Birthweight among Urban Residents in Massachusetts. International Journal of Environmental Research and Public Health, 17(23), 8805. https://doi.org/10.3390/ijerph17238805
Zulyanti, T., & Noeryanti, N. (2022). Perbandingan pengelompokan usaha mikro kecil dan menengah di Kabupaten Klaten Tahun 2019 dengan Metode k-Means dan Clustering Large Application. Jurnal Statistika Industri Dan Komputasi, 7(01), 46–59.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dwi Putri Juniar Adam, Salmun K. Nasib, Amanda Adityaningrum

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

