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Introduction	
Meningitis	 is	 an	 infectious	 disease	 characterized	 by	 infection	 and	 inflammation	 of	 the	 brain's	
lining,	making	 it	 one	of	 the	 ten	most	dangerous	diseases	 in	 the	world	 (Hardiyanti	 et	 al.,	 2017).	
This	 infection	 is	usually	 caused	by	several	microorganisms,	 such	as	bacteria,	viruses,	 and	 fungi,	
but	can	also	be	caused	by	chemical	irritation,	cancer,	and	drug	allergies.	The	spread	of	meningitis	
caused	by	bacteria	or	viruses	is	very	easily	transmitted	from	one	person	to	many	people	through	
the	 air,	 such	 as	 coughing,	 sneezing,	 or	 close	 contact	 with	 people	 who	 carry	 the	 pathogen	
(Asamoah	et	al.,	2020).	Bacterial	meningitis	causes	death	in	children	around	5-40%	and	in	adults	
around	20-50%	if	not	treated.	Even	if	diagnosed	early	and	treated	adequately,	8-15%	of	patients	
will	 die	 within	 24	 to	 48	 hours	 after	 the	 onset	 of	 symptoms.	 Furthermore,	 10-20%	 of	 people	
susceptible	to	meningitis	infection	will	have	permanent	sequelae,	namely	brain	damage.	Patients	
who	 survive	meningitis	will	 experience	 neurological	 disorders	 and	 even	 if	 they	 receive	 proper	
treatment,	 they	 will	 still	 cause	 health	 problems	 such	 as	 partial	 vision	 impairment,	 hearing	
impairment,	 and	 learning	disabilities	 (Hadning	et	 al.,	 2020).	One	 treatment	 that	 can	be	done	 to	
reduce	 morbidity	 and	 mortality	 due	 to	 infectious	 diseases	 such	 as	 bacterial	 meningitis	 is	 by	
administering	antibiotics.	
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	 The	 mathematical	 model	 in	 this	 study	 is	 a	 SCIR-type	 meningitis	
disease	 spread	model,	 namely	 susceptible	 (S),	 carrier	 (C),	 infected	
(I),	and	recovery	(R).	In	the	model	used,	there	are	two	equilibrium	
points,	 namely	 the	 disease-free	 equilibrium	 point	 (𝐸!)	 and	 the	
endemic	equilibrium	point	(𝐸∗).	The	conditions	and	stability	of	the	
equilibrium	 point	 are	 determined	 by	 the	 basic	 reproduction	
number	(ℜ!),	which	is	the	value	that	determines	whether	or	not	the	
spread	 of	meningitis	 infection	 in	 a	 population.	 The	 results	 of	 this	
study	 show	 that	 the	 stability	 of	 the	disease-free	 equilibrium	point	
and	the	endemic	equilibrium	point	are	locally	asymptotically	stable	
and	 by	 using	 the	 Lyapunov	 Function	 method	 it	 is	 found	 that	 the	
disease-free	 equilibrium	 point	 will	 be	 globally	 stable	 when	
(ℜ! 	≤ 1),	 while	 the	 endemic	 equilibrium	 point	 will	 be	 globally	
stable	 when	 (ℜ! > 1).	 Numerical	 simuations	 perform	 to	 support	
the	theoretical	results.	
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Patients	infected	with	bacterial	meningitis	can	survive	with	antibiotic	treatment.	Antibiotics	
are	 a	 treatment	 to	 fight	 infections	 caused	 by	 bacteria,	 which	 can	 reduce	 the	 risk	 of	 severe	
complications	 and	 brain	 damage	 in	 bacterial	 meningitis	 patients.	 One	 standard	 treatment	 for	
bacterial	 meningitis	 is	 intravenous	 administration	 of	 antibiotics	 injected	 directly	 into	 a	 vein	
(Sheehan,	2019;	Asamoah	et	al.,	2020).	Every	year,	more	than	250,000	patients	are	successfully	
treated	with	IV	(intravenous)	antibiotics	at	home.	Even	though	the	availability	of	antibiotics	and	
hospital	care	is	now	guaranteed,	bacterial	meningitis	still	has	high	morbidity	and	mortality	rates.	
Around	10%	of	the	cases	reported	are	the	mortality	rate	in	treated	patients,	while	the	mortality	
rate	in	untreated	patients	reaches	50%	-	90%	(Yanuar	et	al,	2019).		

Mathematical	modeling	of	the	spread	of	meningitis	that	has	been	carried	out	previously	can	
be	studied,	among	others,	in	(Afifah	et	al,	2019;	Asamoah	et	al,	2018;	Asamoah	et	al,	2020;	Kotola	
et	al,	2022;	Peter	et	al,	2022;	Turkun	et	al,	2023).	In	this	study,	the	effect	of	antibiotic	efficacy	is	
analyzed	using	the	mathematical	model.	The	SCIR-type	meningitis	epidemic	model	 in	 this	study	
will	 be	 analyzed	by	determining	 the	disease-free	 equilibrium	point,	 endemic	 equilibrium	point,	
basic	 reproduction	 number,	 local	 stability	 analysis	 of	 the	 equilibrium	 point,	 global	 stability	
analysis	of	the	equilibrium	point,	and	numerical	simulation	of	the	stability	analysis	obtained.	To	
calculate	 the	basic	reproduction	number	we	used	the	next	generation	matrix	method	(Van-den-
Driessche	&	Watmough,	2002;	Martcheva,	2015).	Meanwhile,	 to	 show	the	global	 stability	of	 the	
equilibrium	 point,	 we	 use	 the	 Lyapunov	 function	 which	 has	 been	 commonly	 used	 in	 previous	
studies	(Vargas,	2009).	

Mathematical	model	
The	establishment	of	a	mathematical	model	of	the	spread	of	meningitis	is	done	by	considering	the	
following	assumptions.	
(1)	 Each	 individual	 in	 the	 population	 (at	 time	 t)	 is	 always	 in	 one	 of	 the	 populations	 namely	

susceptible	(𝑆),	carrier	(𝐶),	infected	(𝐼),	and	recovered	(𝑅).	The	population	size	of	𝑆, 𝐶, 𝐼, 𝑅	
is	in	the	form	of	proportion,	so	𝑁(𝑡) =. 𝑆(𝑡) + 𝐶(𝑡)+. 𝐼(𝑡)+. 𝑅(𝑡).	

(2)	 Every	new	individual,	immune-compromised	individual,	and	surviving	individual	belongs	to	
the	susceptible	population	(𝑆).	

(3)	 There	 is	an	average	recruitment	process	of	new	individuals	 in	the	sub-population	with	an	
average	recruitment	rate	Λ > 0.	There	is	a	natural	mortality	process	in	each	sub-population	
with	a	natural	mortality	rate	𝜇 > 0.	

(4)	 The	 rate	 of	 disease	 transmission	 from	 susceptible	 (𝑆)	 	 to	 carrier	 (𝐶)	 through	 interaction	
between	susceptible	and	infected	individuals	is	expressed	by		𝛽 > 0.	

(5)	 The	 transition	 rate	 of	 disease	 transmission	 from	 carrier	 class	 (𝐶)	 to	 fully	 infected	 (𝐼)	 	 is	
expressed	by	𝛼 > 0.	

(6)	 The	number	of	operators	that	switch	to	the	recovered	class	due	to	defense	or	natural	cure	is	
expressed	by	𝜔 > 0.	

(7)	 The	rate	of	disease	recovery	from	infected	(𝐼)		to	cured	(𝑅)		is	expressed	by	𝜌𝛾(𝐼)	with	𝛾	the	
minimum	recovery	 rate	and	ρ	 the	 rate	of	 change	 in	antibiotic	 efficacy	assumed	 to	be	0 <
𝜌 ≤ 1.	

(8)	 The	death	rate	due	to	disease	is	expressed	by	𝛿 > 0	
(9)	 The	transition	rate	from	being	cured	(𝑅)	and	becoming	susceptible	to	the	disease	again	(𝑆)	

is	expressed	by	the	immunity	loss	rate	𝜃 > 0.	

Based	on	 the	above	assumptions,	 the	 following	bacterial	meningitis	disease	spread	model	
was	formed	(Figure	1).		
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Figure	1.	Compartment	diagram	of	SCIR	model	for	transmission	dynamics	of	

bacterial	meningitis	with	antibiotic	recovery	
	
(1)	 Susceptible	sub-populations	(𝑆)	

The	 increase	of	 individuals	 in	 the	susceptible	sub-population	 is	caused	by	the	presence	of	
new	individuals	denoted	by	Λ.	The	population	size	(S)	will	also	increase	due	to	the	presence	
of	𝜃𝑅	 which	 is	 individuals	who	 lose	 immunity	 after	 recovery	 and	will	 decrease	with	 the	
transmission	process	with	 infected	individuals,	carrier	 individuals,	and	with	natural	death	
denoted	[𝛽(𝐶 + 𝐼) + 𝜇]𝑆.	

𝑑𝑆
𝑑𝑡

= Λ − [𝛽(𝐶 + 𝐼) + 𝜇]𝑆 + 𝜃𝑅	

	
(2)	 Carrier	sub-population	(𝐶)		

The	 number	 of	 individuals	 in	 the	 carrier	 sub-population	 will	 increase	 as	 susceptible	
individuals	develop	into	infected	[𝛽(𝐶 + 𝐼)]𝑆	individuals.	It	will	then	decrease	with	natural	
mortality	𝜇𝐶,	individuals	recovering	from	disease	due	to	natural	cure	𝜔𝐶,,	and	individuals	in	
the	carrier	class	becoming	fully	ill	𝛼𝐶	or	progression	of	infection	to	symptomatic	infection.	

𝑑𝐶
𝑑𝑡

= [𝛽(𝐶 + 𝐼)]𝑆 − (𝜇 + 𝜔 + 𝛼)𝐶	

	
(3)	 Infected	sub-population	(𝐼)		

The	 number	 of	 individuals	 in	 the	 infected	 sub-population	 is	 due	 to	 the	 transition	 rate	 of	
individuals	from	the	carrier	class	to	fully	sick	𝛼𝐶.	It	then	decreases	due	to	natural	mortality	
𝜇𝐼,	death	from	infection	𝛿𝐼,	and	recovery	rate	𝜌𝛾𝐼.	To	study	the	rate	of	change	of	antibiotic	
efficacy,	this	study	uses	the	ideas	proposed	by	[4]	which	incorporates	the	effect	of	effective	
antibiotic	change	in	its	model	where	𝜌	is	the	rate	of	change	of	antibiotic	efficacy	and	𝛾	is	the	
recovery	rate.	Antibiotic	efficacy,	𝜌 = 1		indicates	100%	antibiotic	efficacy	and	it	is	assumed	
that	0 < 𝜌 ≤ 1.	Thus	the	population	of	infected	individuals	will	decrease	due	to	the	recovery	
process	that	relies	on	antibiotic	efficacy.	

𝑑𝐼
𝑑𝑡
= 𝛼𝐶 − [(𝜇 + 𝛿)𝐼 + 𝜌𝛾𝐼]	

	
(4)	 Recovered	sub-population	(𝑅)		

The	number	of	individuals	in	the	Recovered	sub-population	increases	with	the	presence	of	
sick	 individuals	 undergoing	 recovery	 𝜌𝛾𝐼	 and	 with	 the	 rate	 of	 individuals	 experiencing	
natural	 recovery	 𝜔𝐶.	 The	 number	 of	 individuals	 in	 the	 Recovered	 sub-population	 will	
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decrease	due	to	the	presence	of	individuals	who	lose	immunity	after	recovery	𝜃𝑅	as	well	as	
the	presence	of	natural	mortality	𝜇𝑅.	

𝑑𝑅
𝑑𝑡

= 𝜌𝛾𝐼 + 𝜔𝐶 − (𝜃 + 𝜇)𝑅	

Thus,	the	following	system	of	differential	equations	is	obtained:	
𝑑𝑆
𝑑𝑡

= Λ − [𝛽(𝐶 + 𝐼) + 𝜇]𝑆 + 𝜃𝑅	

𝑑𝐶
𝑑𝑡

= 𝛽(𝐶 + 𝐼)𝑆 − (𝜇 + 𝜔 + 𝛼)𝐶	

𝑑𝐼
𝑑𝑡
= 𝛼𝐶 − [(𝜇 + 𝛿)𝐼 + 𝜌𝛾𝐼]	

𝑑𝑅
𝑑𝑡

= 𝜌𝛾𝐼 + 𝜔𝐶 − (𝜃 + 𝜇)𝑅	

(1)	

which	 fulfils	 the	 initial	 conditions	 𝑆(0). ≥ 0, 𝐶(0). ≥ 0, 𝐼(0). ≥ 0, 𝑅(0). ≥ 0.	 The	 total	 disease	
dynamics	of	the	model	is	obtained	by	summing	up	the	system	of	equations	(1),	namely	
!"
!#
= !$

!#
+ !%

!#
+ !&

!#
+ !'

!#
= Λ − 𝜇𝑁 − 𝛿𝐼,		which	𝑁 = 𝑆 + 𝐶 + 𝐼 + 𝑅.	

Results	and	discussion	
Analysis	of	local	stability	at		equilibrium	points	

The	equilibrium	point	of	the	system	in	equation	(1)	is	obtained	when	𝒅𝑺
𝒅𝒕
= 𝟎,	𝒅𝑪

𝒅𝒕
= 𝟎,	𝒅𝑰

𝒅𝒕
=

𝟎,	dan	𝒅𝑹
𝒅𝒕
= 𝟎.	Thus,	the	disease-free	equilibrium	point	𝑬𝟎 = (𝑺𝟎, 𝑪𝟎, 𝑰𝟎, 𝑹𝟎) = +𝚲

𝝁
, 𝟎, 𝟎, 𝟎,.	

Analysis	of	stability	at	the	equilibrium	point	requires	a	basic	reproduction	number	(𝕽𝟎).	
Basic	 reproduction	number	 is	 the	 average	number	of	 infections	 carried	out	 by	 infected	
individuals.	The	basic	reproduction	number	is	obtained	using	the	next	generation	matrix	

method	(Martcheva,	2015).	The	basic	reproduction	number	is	ℜ* =
𝜷𝚲,(𝝁.𝜹).𝝆𝜸.𝜶4

𝝁(𝝁.𝝎.𝜶),(𝝁.𝜹).𝝆𝜸4
	.	

 
Theorem	1	
The	equilibrium	point	is	𝐸(	locally	asymptotically	stable	if	ℜ( < 1.	
	
Proof	
The	Jacobian	matrix	of	system	(1)	at	point𝐸( ≔ (𝑆(, 𝐶(, 𝐼(, 𝑅() = D)

*
	 ,0	,0	,0	E	is	as	follows:	

𝐽(𝑆, 𝐶, 𝐼, 𝑅) =

⎣
⎢
⎢
⎡
−(𝛽(𝐶 + 𝐼) + 𝜇) −𝛽𝑆 −𝛽𝑆 𝜃

𝛽(𝐶 + 𝐼) 𝛽𝑆 − (𝜇 + 𝜔 + 𝛼) 𝛽𝑆 0
0 𝛼 −(𝜇 + 𝛿 + 𝜌𝛾) 0
0 𝜔 𝜌𝛾 −(𝜃 + 𝜇)⎦

⎥
⎥
⎤
	

The	disease-free	stability	point 𝐸( ≔ (𝑆(, 𝐶(, 𝐼(, 𝑅() = D)
*
	 ,0	,0	,0	E	is	substituted	into	the	Jacobian	

matrix	to	obtain	

𝐽(𝑆(, 𝐶(, 𝐼(, 𝑅() =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝜇 −𝛽 M

Λ
𝜇
	N −𝛽 M

Λ
𝜇
	N 𝜃

0 𝛽 M
Λ
𝜇
	N − (𝜇 + 𝜔 + 𝛼) 𝛽 M

Λ
𝜇
	N 0

0 𝛼 −(𝜇 + 𝛿 + 𝜌𝛾) 0
0 𝜔 𝜌𝛾 −(𝜃 + 𝜇)⎦

⎥
⎥
⎥
⎥
⎥
⎤
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From	the	Jacobian	matrix,	we	will	find	the	characteristic	equation	using	
|𝐽(𝐸() − 𝜆𝐼| = 0	

	
thus,		

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝜇 − 𝜆 −𝛽 M

Λ
𝜇
	N −𝛽 M

Λ
𝜇
	N 𝜃

0 𝛽 M
Λ
𝜇
	N − (𝜇 + 𝜔 + 𝛼 + 𝜆) 𝛽 M

Λ
𝜇
	N 0

0 0 𝑅 − 𝜆 0
0 0 0 −(𝜃 + 𝜇 + 𝜆)⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 0	

The	characteristic	equation	of	the	Jacobian	matrix	is	obtained	as	follows	

(−𝜇 − 𝜆)Q𝛽 M
Λ
𝜇
	N − (𝜇 + 𝜔 + 𝛼 + 𝜆)RS

−𝛼𝛽 DΛ𝜇E

𝛽 DΛ𝜇E − (𝜇 + 𝜔 + 𝛼)
− (𝜇 + 𝛿 + 𝜌𝛾) − 𝜆T(−𝜃 − 𝛿 − 𝜆)

= 0	
From	this	characteristic	equation,	the	eigenvalue	is	found	to	be	
𝜆+ = −𝜇 < 0		

𝜆, = 𝛽 M
Λ
𝜇
	N − (𝜇 + 𝜔 + 𝛼)	

= (𝜇 + 𝜔 + 𝛼)S
𝛽 DΛ𝜇	E

(𝜇 + 𝜔 + 𝛼)
− 1T	

for,	
-.!"	0

(*2324)
< 1,	maka	𝜆, = 𝛽 D)

*
	E − (𝜇 + 𝜔 + 𝛼) < 0	

𝜆6 =
−𝛼𝛽 DΛ𝜇E

𝛽 DΛ𝜇E − (𝜇 + 𝜔 + 𝛼)
− (𝜇 + 𝛿 + 𝜌𝛾)	

=
(𝜇 + 𝛿 + 𝜌𝛾)

M− Λ𝛽
𝜇(𝜇 + 𝜔 + 𝛼) + 1N

(ℜ( − 1)	

for,	ℜ( =
-)7(*28)29:24;

*(*2324)7(*28)29:;
< 1,	Maka		

𝜆6 =
−𝛼𝛽 DΛ𝜇E

𝛽 DΛ𝜇E − (𝜇 + 𝜔 + 𝛼)
− (𝜇 + 𝛿 + 𝜌𝛾) < 0	

𝜆< = −𝜃 − 𝜇 < 0	
Since	 the	 eigenvalues	 (𝜆+, 𝜆,, 𝜆6, 𝑎𝑛𝑑	𝜆<)	 	 are	 negative	 in	 all	 real	 parts,	 based	 on	 the	

characteristic	 roots	 (eigenvalues),	 the	 equilibrium	 point	𝐸(	 	 of	 the	 nonlinear	 system	 is	 locally	
asymptotically	stable	and	the	disease-free	equilibrium	point	is	stable	for	ℜ( < 1.	

Furthermore,	 we	 have	 endemic	 equilibrium	 point	 𝑬∗ = (𝑺∗, 𝑪∗, 𝑰∗, 𝑹∗)	are	 obtained	 as	
follows.	

𝑆∗ =
(𝜇 + 𝜔 + 𝛼)6(𝜇 + 𝛿) + 𝜌𝛾	:

𝛽6(𝜇 + 𝛿) + 𝜌𝛾 + 𝛼:
	

𝐶∗ =
Λ\(𝜇 + 𝛿) + 𝜌𝛾	](ℜ( − 1)(𝜃 + 𝜇)

(𝜄 − 𝜃𝜅)ℜ(
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𝐼∗ =
Λα(ℜ( − 1)(𝜃 + 𝜇)

(𝜄 − 𝜃𝜅)ℜ(
	

𝑅∗ =
Λ(𝑅( − 1)(𝛼𝜌𝛾 + [(𝜇 + 𝛿) + 𝜌𝛾]𝜔)

(𝜄 − 𝜃𝜅)ℜ(
	

With	𝜄 = (𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾)(𝜃 + 𝜇)	and			𝜅 = 𝛼𝜌𝛾( + (𝜇 + 𝛿 + 𝜌𝛾)𝜔.	
	
The	local	stability	of	the	endemics	equilibrium	point	is	state	in	Theorem	2	as	follow.	
	
Theorem	2	
The	equilibrium	point	𝐸+	is	locally	asymptotically	stable	if	ℜ( > 1.	
	
Proof	
The	Jacobian	matrix	of	system	(1)	at	point	𝐸+ = (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗)		is	as	follows:	
	

𝐽(𝐸+) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇 −

(𝜇 + 𝜔 + 𝛼)\(𝜇 + 𝛿) + 𝜌𝛾	]
\(𝜇 + 𝛿) + 𝜌𝛾 + 𝛼]

−
(𝜇 + 𝜔 + 𝛼)\(𝜇 + 𝛿) + 𝜌𝛾	]

\(𝜇 + 𝛿) + 𝜌𝛾 + 𝛼]
𝜃

𝑈
−𝛼(𝜇 + 𝜔 + 𝛼)
(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	

(𝜇 + 𝜔 + 𝛼)\(𝜇 + 𝛿) + 𝜌𝛾	]
\(𝜇 + 𝛿) + 𝜌𝛾 + 𝛼]

0

0 𝛼 −(𝜇 + 𝛿 + 𝜌𝛾) 0
0 𝜔 𝜌𝛾 −(𝜃 + 𝜇)⎦

⎥
⎥
⎥
⎥
⎥
⎤

	

	
with, 

𝑇 =
−𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) − ℜ(𝜇(𝜄 − 𝜃𝜅)

(𝜄 − 𝜃𝜅)ℜ(
	

𝑈 =
βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)

(𝜄 − 𝜃𝜅)ℜ(
	

The	characteristic	equation	of	the	Jacobian	matrix	is	obtained	as	follows	
(𝑇 − 𝜆)(𝑉 − 𝜆)(𝑋 − 𝜆)(𝑍 − 𝜆) = 0	

From	this	characteristic	equation,	the	eigenvalues	are	obtained	
	
For	the	value	of	T	

𝑇	 = −
𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) − ℜ(𝜇(𝜄 + 𝜃𝜅)

(𝜄 − 𝜃𝜅)ℜ(
	

	
= −Q

𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) + ℜ(𝜇(𝜄 + 𝜃𝜅)
(𝜄 − 𝜃𝜅)ℜ(

R	

Thus,		𝜆+ = 𝑇 < 0	
	
For	the	value	of	V	

V	 =
𝑈
𝑇
Q
(𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾	)

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)
R −

𝛼(𝜇 + 𝜔 + 𝛼)
(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	

	

	

=
MβΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)

(𝜄 − 𝜃𝜅)ℜ(
N

M−𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) − ℜ(𝜇(𝜄 − 𝜃𝜅)
(𝜄 − 𝜃𝜅)ℜ(

N
Q
(𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾	)

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)
R	

−
𝛼(𝜇 + 𝜔 + 𝛼)

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	
	



   e-ISSN	2776-1029	p-ISSN	2776-1002	 	

 A	mathematical	model	of	meningitis	with	antibiotics	effects	(Ginting	&	Adi)																																			 					7	

	
= −

βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾	)
𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) + ℜ(𝜇(𝜄 − 𝜃𝜅)

−
𝛼(𝜇 + 𝜔 + 𝛼)

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	
	

	
= −Q

βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾	)
𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) + ℜ(𝜇(𝜄 − 𝜃𝜅)

+
𝛼(𝜇 + 𝜔 + 𝛼)

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)
R	

 
Thus	𝜆, = 𝑉 < 0	
	
For	the	value	of	X	

X	 =
−𝛼𝑊
𝑉

− (𝜇 + 𝛿 + 𝜌𝛾)	

	

= −𝛼S

−βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾	)
𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) + ℜ(𝜇(𝜄 − 𝜃𝜅)

+ (𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾	)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)
−βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝜔 + 𝛼)(𝜇 + 𝛿 + 𝜌𝛾	)

𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼) + ℜ(𝜇(𝜄 − 𝜃𝜅)
− 𝛼(𝜇 + 𝜔 + 𝛼)
(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	

T

− (𝜇 + 𝛿 + 𝜌𝛾)	
	

= −𝛼 Q
(𝜇 + 𝛿 + 𝜌𝛾	)[ℜ(𝜇(𝜄 − 𝜃𝜅)]

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	[βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾	) + 𝛼𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)] + 𝛼𝜇ℜ((𝜄 − 𝜃𝜅)
R

− (𝜇 + 𝛿 + 𝜌𝛾)	
Thus	𝜆6 = 𝑋 < 0	
For	the	value	of	𝑍	
 

Z	 =
−𝑌
𝑋
𝛼𝜃𝑈
𝑇𝑉

+
𝜃𝜔𝑈
𝑇𝑉

− (𝜃 + 𝜇)	

	 = −
𝑈
𝑇𝑉 M

𝛼𝜃
𝑌
𝑋
− 𝜃𝜔N − (𝜃 + 𝜇)	

	

= −
𝑈
𝑇𝑉

i𝛼𝜃S
−𝜔M (𝜇 + 𝛿 + 𝜌𝛾	)[ℜ(𝜇(𝜄 − 𝜃𝜅)]

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	[βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾	) + 𝛼𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)] + 𝛼𝜇ℜ((𝜄 − 𝜃𝜅)
N + 𝜌𝛾

−𝛼 M
(𝜇 + 𝛿 + 𝜌𝛾)[ℜ(𝜇(𝜄 − 𝜃𝜅)]

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	[βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾) + 𝛼𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)] + 𝛼𝜇ℜ((𝜄 − 𝜃𝜅)
N − (𝜇 + 𝛿 + 𝜌𝛾)

T

− 𝜃𝜔j − (𝜃 + 𝜇)	

	

= −
𝑈
𝑇𝑉

i𝛼𝜃S
𝜔 M (𝜇 + 𝛿 + 𝜌𝛾	)[ℜ(𝜇(𝜄 − 𝜃𝜅)]

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	[βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾	) + 𝛼𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)] + 𝛼𝜇ℜ((𝜄 − 𝜃𝜅)
N + 𝜌𝛾

𝛼 M
(𝜇 + 𝛿 + 𝜌𝛾	)[ℜ(𝜇(𝜄 − 𝜃𝜅)]

(𝜇 + 𝛿 + 𝜌𝛾 + 𝛼)	[βΛ(ℜ( − 1)(𝜃 + 𝜇)(𝜇 + 𝛿 + 𝜌𝛾	) + 𝛼𝛽Λ(ℜ( − 1)(𝜃 + 𝜇)] + 𝛼𝜇ℜ((𝜄 − 𝜃𝜅)
N − (𝜇 + 𝛿 + 𝜌𝛾)

T

− 𝜃𝜔j − (𝜃 + 𝜇	

Thus	𝜆< = 𝑍 < 0	
Since	the	eigenvalues	(𝜆+, 𝜆,, 𝜆6, 𝑑𝑎𝑛	𝜆<)	are	negative	in	all	real	parts,	based	on	their	characteristic	
roots,	the	equilibrium	point	𝐸+	of	the	nonlinear	system	is	locally	asymptotically	stable.	
 
Global	stability	of	equilibrium	points	
Theorem	3		
The	disease-free	equilibrium	point	𝐸( = (𝑆(, 𝐶(, 𝐼(, 𝑅()		in	system	(4.1)	is	globally	asymptotically	
stable	if	ℜ( ≤ 1.	
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Proof	
Suppose	 the	 Lyapunov	 function	 for	 the	 SCIR	model	 at	 the	 disease-free	 equilibrium	 point	 with	
positive	constants	𝑘+, 𝑘,,	and	𝑘6	as	follows:	

𝑉(𝑆, 𝐶, 𝐼, 𝑅) = M𝑆 − 𝑆( − 𝑆( ln M
𝑆
𝑆(NN

+ 𝑘+𝐶 + 𝑘,𝐼 + 𝑘6𝑅	 (4.19)	

Investigate	 whether	 𝑉(𝑆, 𝐶, 𝐼, 𝑅) = 0	for	 (𝑆, 𝐶, 𝐼, 𝑅) = (𝑆(, 𝐶(, 𝐼(, 𝑅()	and	 𝑉(𝑆, 𝐶, 𝐼, 𝑅) ≥ 0	 for	
(𝑆, 𝐶, 𝐼, 𝑅) ≠ (𝑆(, 𝐶(, 𝐼(, 𝑅()	as	follows:	
for	(𝑆, 𝐶, 𝐼, 𝑅) = (𝑆(, 𝐶(, 𝐼(, 𝑅(),	

𝑉(𝑆, 𝐶, 𝐼, 𝑅) = M𝑆 − 𝑆( − 𝑆( ln M
𝑆
𝑆(NN

+ 𝑘+𝐶 + 𝑘,𝐼 + 𝑘6𝑅	

= M𝑆 − 𝑆( − 𝑆( ln M
𝑆
𝑆(NN

+ 0 + 0 + 0	

=
Λ
𝜇
(1 − 1 − ln 1)	

= 0	
for	(𝑆, 𝐶, 𝐼, 𝑅) ≠ (𝑆(, 𝐶(, 𝐼(, 𝑅()	,	 $

$#
≠ 1,	thus	

𝑆
𝑆(
− 1 − 𝑆( ln M

𝑆
𝑆(
N ≠ 0	

Thus,	

𝑉(𝑆, 𝐶, 𝐼, 𝑅) = M𝑆 − 𝑆( − 𝑆( ln M
𝑆
𝑆(
NN + 𝑘+𝐶 + 𝑘,𝐼 + 𝑘6𝑅	

= 𝑆( M
𝑆
𝑆(
− 1 − ln

𝑆
𝑆(
N + 𝑘+𝐶 + 𝑘,𝐼 + 𝑘6𝑅	

It	 can	 be	 seen	 that	 𝑉(𝑆, 𝐶, 𝐼, 𝑅)	 will	 be	 positive	 if	 𝑆( D
$
$#
− 1 − ln $

$#
E > 0.	 Suppose	 $

$#
= 𝑥,	 then	

suppose	there	is	a	function	𝑔(𝑥) = 𝑥 − 1 − ln 𝑥,	function	𝑔(𝑥)	will	reach	a	global	minimum	at	𝑥 =
1	and	𝑔(1) = 0.	Therefore,	𝑔(𝑥) > 0		for	all	𝑥 > 0	and	𝑥 ≠ 1.	Then	𝑉(𝑆, 𝐶, 𝐼, 𝑅)	is	positive	for		 $

$#
>

0	and	 $
$#
≠ 1.	

The	derivative	of	the	V	function	in	equation	(4.19)	is	as	follows:	
𝜕𝑉(𝑆, 𝐶, 𝐼, 𝑅)

𝜕𝑡
	 =

𝑑𝑉
𝑑𝑆

∙
𝑑𝑆
𝑑𝑡
+
𝑑𝑉
𝑑𝐶

∙
𝑑
𝑑𝑡
+
𝑑𝑉
𝑑𝐼

∙
𝑑𝐼
𝑑𝑡
+
𝑑𝑉
𝑑𝑅

∙
𝑑𝑅
𝑑𝑡
	

= M1 −
𝑆(
𝑆 N

∙
𝑑𝑆
𝑑𝑡
+ 𝑘+ ∙

𝑑𝐶
𝑑𝑡

+ 𝑘, ∙
𝑑𝐼
𝑑𝑡
+ 𝑘6 ∙

𝑑𝑅
𝑑𝑡
	

(4.20)	

Substitute	!$
!#
, !%
!#
, !&
!#
,	and	!'

!#
	from	equation	(4.1)	into	equation	(4.20)	to	obtain	

𝜕𝑉(𝑆, 𝐶, 𝐼, 𝑅)
𝜕𝑡

= QM1 −
𝑆(
𝑆 N

(Λ − (𝛽(𝐶 + 𝐼) + 𝜇)𝑆 + 𝜃𝑅) + 𝑘+(𝛽(𝐶 + 𝐼)𝑆 − (𝜇 + 𝜔 + 𝛼)𝐶)

+ 𝑘,(𝛼𝐶 − (𝜇 + 𝛿)𝐼 − 𝜌𝛾𝐼) + 𝑘6(𝜌𝛾𝐼 + 𝜔𝐶 − (𝜃 + 𝜇)𝑅)R	

It	will	be	investigated	whether	>?($,%,&,')
>#

= 0	for	(𝑆, 𝐶, 𝐼, 𝑅) = (𝑆(, 𝐶(, 𝐼(, 𝑅()	and		>?($,%,&,')
>#

≤ 0	for	
(𝑆, 𝐶, 𝐼, 𝑅) ≠ (𝑆(, 𝐶(, 𝐼(, 𝑅()	as	follows	:	
For	(𝑆, 𝐶, 𝐼, 𝑅) = (𝑆(, 𝐶(, 𝐼(, 𝑅(),	
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𝜕𝑉(𝑆, 𝐶, 𝐼, 𝑅)
𝜕𝑡

	 = QM1 −
𝑆(
𝑆 N

(Λ − (𝛽(𝐶 + 𝐼) + 𝜇)𝑆 + 𝜃𝑅)

+ 𝑘+(𝛽(𝐶 + 𝐼)𝑆 − (𝜇 + 𝜔 + 𝛼)𝐶)
+ 𝑘,(𝛼𝐶 − (𝜇 + 𝛿)𝐼 − 𝜌𝛾𝐼)

+ 𝑘6(𝜌𝛾𝐼 + 𝜔𝐶 − (𝜃 + 𝜇)𝑅)R	

	 = 0	
For	(𝑆, 𝐶, 𝐼, 𝑅) ≠ (𝑆(, 𝐶(, 𝐼(, 𝑅(),	When	𝑆 ≤ 𝑆(,	so	
𝜕𝑉(𝑆, 𝐶, 𝐼, 𝑅)

𝜕𝑡
	 = s𝑘+ M𝛽(𝐶 + 𝐼) M

Λ
𝜇N
− (𝜇 + 𝜔 + 𝛼)𝐶N + 𝑘,(𝛼𝐶 − (𝜇 + 𝛿)𝐼 − 𝜌𝛾𝐼)

+ 𝑘6(𝜌𝛾𝐼 + 𝜔𝐶 − (𝜃 + 𝜇)𝑅)t	

	 = s𝑘+
𝛽Λ
𝜇
𝐶 + 𝑘+ 	

𝛽Λ
𝜇
𝐼 − 𝑘+(𝜇 + 𝜔 + 𝛼)𝐶 + 𝑘,𝛼𝐶 − 𝑘,(𝜇 + 𝛿 + 𝜌𝛾)𝐼

+ 𝑘6𝜌𝛾𝐼 + 𝑘6𝜔𝐶 − 𝑘6(𝜃 + 𝜇)𝑅t	

	
= uQ𝑘+ v

𝛽Λ
𝜇
− (𝜇 + 𝜔 + 𝛼)w + 𝑘,𝛼 + 𝑘6𝜔R𝐶

+ M𝑘+
𝛽Λ
𝜇
− 𝑘,(𝜇 + 𝛿 + 𝜌𝛾) + 𝑘6𝜌𝛾N 𝐼 − 𝑘6(𝜃 + 𝜇)𝑅x	

Suppose	

M𝑘+
𝛽Λ
𝜇
− 𝑘,(𝜇 + 𝛿 + 𝜌𝛾) + 𝑘6𝜌𝛾N = 0	

𝑘+
𝛽Λ
𝜇
= 𝑘,(𝜇 + 𝛿 + 𝜌𝛾) − 𝑘6𝜌𝛾	

Chosen	𝑘+ = (𝜇 + 𝛿 + 𝜌𝛾) − 𝜌𝛾,	𝑘, =
-)
*
(1 − 𝜌𝛾),	and	𝑘6 =

-)
*
\1 − (𝜇 + 𝛿 + 𝜌𝛾)],	thus	

𝜕𝑉(𝑆, 𝐶, 𝐼, 𝑅)
𝜕𝑡

	
≤ yz\(𝜇 + 𝛿 + 𝜌𝛾) − 𝜌𝛾]v

𝛽Λ
𝜇
− (𝜇 + 𝜔 + 𝛼)w + v

𝛽Λ
𝜇
(1 − 𝜌𝛾)w𝛼

+ v
𝛽Λ
𝜇
\1 − (𝜇 + 𝛿 + 𝜌𝛾)]w𝜔{𝐶

− v
𝛽Λ
𝜇
\1 − (𝜇 + 𝛿 + 𝜌𝛾)]w (𝜃 + 𝜇)𝑅|	

	
= uv(𝜇 + 𝛿 + 𝜌𝛾)(𝜇 + 𝜔 + 𝛼)(ℜ( − 1)

−
𝛽Λ
𝜇
\(𝛼 + 1)𝜌𝛾 + (𝜇 + 𝛿 + 𝜌𝛾 − 1)𝜔]

+ (𝜇 + 𝜔 + 𝛼)𝜌𝛾w𝐶

−
𝛽Λ
𝜇
(𝜃 + 𝜇)\1 − (𝜇 + 𝛿 + 𝜌𝛾)]𝑅x	

It	is	obtained	that	>?($,%,&,')
>#

≤ 0	if		ℜ( ≤ 1.	
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Since	the	model	fulfils	the	Lyapunov	property,	the	meningitis	epidemic	model	at	the	disease-free	
equilibrium	point	is	globally	asymptotically	stable.	
	
Theorem	4	
The	 endemic	 equilibrium	 point	 𝐸+ = (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗)	 in	 system	 (4.1)	 is	 globally	 asymptotically	
stable	if	ℜ( > 1.	
	
Proof	
Define	the	Lyapunov	function	at	the	endemic	equilibrium	point	as	follows:	

𝑉(𝑆, 𝐶, 𝐼, 𝑅) =
1
2
[(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)],	

It	will	be	investigated	wheter	𝑉(𝑆, 𝐶, 𝐼, 𝑅) = 0	for	(𝑆, 𝐶, 𝐼, 𝑅) = (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗)	and	𝑉(𝑆, 𝐶, 𝐼, 𝑅) ≥ 0	
for	(𝑆, 𝐶, 𝐼, 𝑅) ≠ (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗)	as	follows:	
For	(𝑆, 𝐶, 𝐼, 𝑅) = (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗),	

𝑉(𝑆, 𝐶, 𝐼, 𝑅)	 =
1
2
[(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)],	

	 =
1
2
[(0) + (0) + (0) + (0)],	

	 = 0	
For	(𝑆, 𝐶, 𝐼, 𝑅) ≠ (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗),	

𝑉(𝑆, 𝐶, 𝐼, 𝑅) =
1
2
[(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)], > 0	

It	is	obtained	that		𝑉(𝑆, 𝐶, 𝐼, 𝑅)	is	positive.	
The	time	derivative	of	𝑉(𝑆, 𝐶, 𝐼, 𝑅)	is	as	follows	
𝑑𝑉(𝑆, 𝐶, 𝐼, 𝑅)

𝑑𝑡
= [(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)]

𝑑(𝑆 + 𝐶 + 𝐼 + 𝑅)
𝑑𝑡

	

It	is	obtained	that	!?($,%,&,')
!#

= 0	for	(𝑆, 𝐶, 𝐼, 𝑅) = (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗)	and		!?($,%,&,')
!#

≤ 0	for	(𝑆, 𝐶, 𝐼, 𝑅) ≠
(𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗)	sebagai	berikut:	
For	(𝑆, 𝐶, 𝐼, 𝑅) = (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗),	
𝑑𝑉(𝑆, 𝐶, 𝐼, 𝑅)

𝑑𝑡
	 = [(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)]

𝑑(𝑆 + 𝐶 + 𝐼 + 𝑅)
𝑑𝑡

	

	 = 0	
For	(𝑆, 𝐶, 𝐼, 𝑅) ≠ (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗),	 It	 is	known	that	𝑁 = 𝑆 + 𝐶 + 𝐼 + 𝑅	and	 	!"

!#
= Λ − 𝜇𝑁 − 𝛿𝐼.	Thus,	

the	
𝑑𝑉(𝑆, 𝐶, 𝐼, 𝑅)

𝑑𝑡
= [(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)][Λ − 𝜇(𝑆 + 𝐶 + 𝐼 + 𝑅) − 𝛿𝐼]	

Suppose	𝛬 = 𝜇(𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗) + 𝛿𝐼∗,	so	
𝜕𝑉
𝜕𝑡
	 = [(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)][𝜇(𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗) + 𝛿𝐼∗

− 𝜇(𝑆 + 𝐶 + 𝐼 + 𝑅) − 𝛿𝐼]	
	 = [(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)][−𝜇(𝑆 − 𝑆∗) − 𝜇(𝐶 − 𝐶∗)

− 𝜇(𝐼 − 𝐼∗) − 𝜇(𝑅 − 𝑅∗) − 𝛿(𝐼 − 𝐼∗)]	

𝜕𝑉
𝜕𝑡

= −z
𝜇(𝑆 − 𝑆∗), + 2𝜇(𝑆 − 𝑆∗)(𝐶 − 𝐶∗) + 𝜇(𝐶 − 𝐶∗), + (𝜇 + 𝛿)(𝐼 − 𝐼∗), + 𝜇(𝑅 − 𝑅∗),

+(2𝜇 + 𝛿)(𝐼 − 𝐼∗)\(𝑆 − 𝑆∗) + (𝐶 − 𝐶∗) + (𝑅 − 𝑅∗)]
+[𝜇(𝑆 − 𝑆∗)(𝑅 − 𝑅∗) + 𝜇(𝐶 − 𝐶∗)(𝑅 − 𝑅∗)]

{	

Next,	substitute	the	value	of	𝐸∗,	obtained	
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𝑆 − 𝑆∗ = 𝑆 − Q
(𝜇 + 𝜔 + 𝛼)\(𝜇 + 𝛿) + 𝜌𝛾	]
𝛽\(𝜇 + 𝛿) + 𝜌𝛾( + 𝛼]

R > 0	

𝐶 − 𝐶∗ = 𝐶 − Q
Λ[(𝜇 + 𝛿) + 𝜌𝛾](𝑅( − 1)(𝜃 + 𝜇)

(𝜄 − 𝜃𝜅)ℜ(
R > 0	

𝐼 − 𝐼∗ = 𝐼 − Q
Λα(𝑅( − 1)(𝜃 + 𝜇)

(𝜄 − 𝜃𝜅)ℜ(
R > 0	

𝑅 − 𝑅∗ = 𝑅 − Q
Λ(𝑅( − 1)(𝛼𝜌𝛾 + [(𝜇 + 𝛿) + 𝜌𝛾]𝜔)

(𝜄 − 𝜃𝜅)ℜ(
R > 0	

If	 ℜ( > 1,	 then	 >?
>#
	 	 is	 negative.	 Therefore,	 the	 model	 fulfils	 the	 Lyapunov	 property	 and	 the	

meningitis	epidemic	model	at	the	endemic	equilibrium	point	is	globally	asymptotically	stable.	
	
Simulation	of	meningitis	disease	spread	model	
Simulations	were	conducted	to	get	an	 idea	of	the	spread	of	meningitis	by	giving	values	for	each	
parameter	according	to	the	ℜ(	condition.	
	

Table	1.	Parameter	for	meningitis	spread	disease	simulation	model	
Parameter	 Description	 Parameter	Value	

𝛬	 Average	 recruitment	 rate	 of	 the	
vulnerable	population	 20	 20	

𝛽	 Disease	 transmission	 rate	 (disease	
transmission)	 0.002	 0.0005	

𝛼	 Transition	rate	of	disease	transmission	
from	carrier	class	to	fully	ill	 0.02	 0.02	

𝜔	 Natural	healing	rate	 0.1118	 0.1118	
𝜌	 Rate	of	change	of	antibiotic	efficacy	 [0.1 − 0.9]	 [0.1 − 0.9]	
𝛾!	 Minimum	recovery	rate	 (0	, 1)	 (0	, 1)	
𝜇	 Natural	mortality	rate	 0.045	 0.089	
𝛿	 Death	rate	due	to	disease	 [0.05 − 0.2]	 0.05 − 0.2	
𝜃	 Immunity	loss	rate	 0.0839	 0.0839	
ℜ!	 Basic	reproduction	 4.6160	 0.5588	

	
By	using	the	parameters	in	Table	1,	the	following	graph	is	obtained.		

 
Figure	2.	Phase	portraits	of	Susceptible,	Carrier,	and	Infected	

populations	with	different	initial	values	
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It	can	be	seen	in	Figure	2	that	the	stable	condition	is	reached	when(𝑆∗ = 95.61, 𝐶∗ = 55.58, 𝐼∗ =
48.37, 𝑅∗ = 0)	 for	 the	 basic	 reproduction	 number	 is	 ℜ( = 4.6160 > 1	 with	 three	 different	
numbers	of	initial	states	of	the	population	Susceptible,	Carrier,	and	Infected	the	population	will	be	
stable	at	a	point	close	to	point	𝐸∗.	This	will	be	clarified	in	Figure	3	where	the	population	will	be	
stable	at	(𝑆∗ = 95.61, 𝐶∗ = 55.58, 𝐼∗ = 48.37, 𝑅∗ = 49.14)	which	is	an	endemic	equilibrium	point	
with	four	different	initial	states.	

 
Figure	3.	Graph	of	population	size	for	ℜ( > 1	

While	in	Figure	4	the	stable	condition	is	achieved	when	(𝑆( = 224.7, 𝐶( = 0, 𝐼( = 0, 𝑅( = 0)	
for	the	basic	reproduction	number	is	ℜ( < 1	with	three	different	numbers	of	initial	states	of	the	
Susceptible,	Carrier,	and	Infected	populations	the	population	will	be	stable	at	a	point	close	to	the	
point	𝐸(.	Numerical	simulation	results	are	in	accordance	with	analytical	calculations	that	show	if	

ℜ( = 0.5588	 < 1	and	 for	 local	 asymptotic	 stability	 conditions	
-.!"	0

(*2324)
= 0.28034 < 1	 	 then	 the	

disease-free	 equilibrium	 point	 is	 fulfilled.	 So	 that	 in	 the	 condition	ℜ( < 1,	 the	 average	 infected	
population	will	decrease	or	there	will	be	no	spread	of	the	disease	because	there	are	individuals	in	
the	 Recovered	 population	 who	 can	 cure	 meningitis	 infection	 and	 the	 effect	 of	 the	 efficacy	 of	
antibiotics	 given.	 This	 will	 be	 clarified	 in	 Figure	 5	 where	 the	 population	 will	 be	 stable	 at	
(𝑆( = 224.7, 𝐶( = 0, 𝐼( = 0, 𝑅( = 0)	which	is	a	disease-free	equilibrium	point	with	four	different	
numbers	of	initial	states.	

 
Figure	4.	Phase	portraits	of	Susceptible,	Carrier,	and	Infected	

populations	with	different	initial	values		
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Figure	5.	Population	change	graph	for	ℜ( < 1	

 

Conclusion	
In	 this	 paper,	 the	 spread	 of	meningitis	 can	 be	modelled	 in	 the	 form	 of	 a	 system	 of	 differential	
equations.	The	equilibrium	points	obtained	from	the	model	are	the	disease-free	equilibrium	point	
(𝐸()	 and	 the	 endemic	 equilibrium	 point	 (𝐸∗).	 The	 disease-free	 equilibrium	 point	 is	 locally	
asymptotically	 stable	 and	 globally	 asymptotically	 stable	 when	 ℜ( < 1,	 while	 the	 endemic	
equilibrium	point	is	locally	asymptotically	stable	and	globally	asymptotically	stable	when	ℜ( > 1		
and	 from	 numerical	 simulations,	 if	 	ℜ( < 1	 in	 the	 long	 run	 the	 spread	 of	 bacterial	 meningitis	
infection	 will	 disappear	 from	 the	 population,	 and	 the	 number	 of	 individuals	 infected	 with	
bacterial	meningitis	will	 decrease	 until	 it	 reaches	 the	 disease-free	 equilibrium	 point	𝐸(,	 which	
identifies	 that	 meningitis	 will	 experience	 extinction.	 Meanwhile,	 if	 ℜ( >	in	 the	 long	 run,	
meningitis	infection	will	always	exist,	in	a	certain	epidemic	level.	
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