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Introduction	
Recently,	 the	 study	of	 fractional	derivative	notion	has	grown	 fast	not	only	 in	 theory	but	also	 in	
applications.	It	is	motivated	by	many	real	phenomena	that	cannot	be	solved	by	standard	or	usual	
derivative.	For	example,	slow	diffusion	or	sub-diffusion	process	cannot	be	modeled	well	by	usual	
diffusion	or	heat	equation	involving	first	derivative	with	respect	to	time	t.	In	subdiffusion	process,	
the	mean	square	displacement	of	a	particle	moving	in	this	process	is	proportional	to	𝑡! 	with	0 <
α < 1.	Of	course,	sub-diffusion	process	cannot	be	modeled	by	usual	diffusion	equation	describing	
usual	 diffusion	 process	 in	 which	 the	 mean	 square	 displacement	 of	 a	 particle	 moving	 in	 this	
process	 is	 proportional	 linearly	 to	 𝑡.	 Such	 phenomena	 can	 be	 found	 in	 various	 studies	 such	 as	
Adams	and	Gelhar	(1992),	Berkowitz	et	al.	(2006),	Hatano	and	Hatano	(1988),	and	Laffaldano	et	
al.	 (2005).	 The	 other	 examples	 are	 viscoelastic	 materials,	 as	 reported	 in	 Podlubny	 (1999).	
Viscoelastic	 materials	 have	 mechanical	 characteristics	 intermediate	 between	 those	 of	 viscous	
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liquid	and	those	of	elastic	solid.	An	elastic	material	satisfies	Hooke	law	i.e.	

𝜎(𝑡) = 𝐸𝜀(𝑡) = 𝐸
𝑑"

𝑑𝑡"
𝜀(𝑡)	

where	𝜎	and	𝜀	are	stress	and	strain	of	the	material	at	𝑡 > 0,	respectively,	and	𝐸	is	a	material	
elasticity	modulus	constant.	A	viscous	material	satisfies	Newton	law	i.e.	

𝜎(𝑡) = 𝑉
𝑑
𝑑𝑡
𝜀(𝑡) = 𝑉

𝑑#

𝑑𝑡#
𝜀(𝑡) 

where	𝑉	is	a	material	viscosity	constant.	How	about	viscoelastic	materials	such	as	synthetic	
polymers,	 aluminium	 metal,	 and	 paste?	 What	 law	 is	 satisfied	 by	 the	 materials?	 Viscoelastic	
materials	satisfy	a	law	

𝜎(𝑡) = 𝐶
𝑑!

𝑑𝑡!
𝜀(𝑡)	

where	𝐶	is	a	material	viscoelasticity	constant	and	𝑑!/𝑑𝑡! 	is	a	fractional	derivative	operator	
of	orde	𝛼	with	0 < 𝛼 < 1.	The	operator	𝑑!/𝑑𝑡! 	describes	a	state	“between”	the	operator		𝑑"/𝑑𝑡"	
and	the	operator	𝑑#/𝑑𝑡#.	

There	 are	 some	 types	 of	 fractional	 derivative	 operators.	 Some	 well-known	 of	 fractional	
derivative	operators	are	Riemann-Liouville	and	Caputo	fractional	derivatives.	Nevertheless,	both	
fractional	 derivative	 operators	 does	 not	 satisfy	 some	 properties	 of	 usual	 derivative	 such	 as		
multiplication	rule,	division	rule,	chain	rule,	Rolle	theorem,	and	mean	value	theorem.	Khalil	et	al.	
[6]	then	gives	new	definition	of	fractional	derivative	satisfying	the	properties	of	usual	derivative	
which	 are	 not	 satisfied	 by	 Riemann-Liouville	 and	 Caputo	 fractional	 derivative.	 This	 fractional	
derivative	 is	 called	 conformable	 fractional	 derivative.	 Abdeljawad	 (2015)	 then	 develops	 the	
conformable	 fractional	 derivative	 and	 gives	 more	 comprehensively	 its	 properties.	 Besides,	
conformable	fractional	derivative	is	defined	simpler	than	the	definition	of	Riemann-Liouvile	and	
Caputo	fractional	derivatives.	Differently	from	Riemann-Liouville	and	Caputo	which	are	nonlocal	
operators,	the	conformable	fractional	derivative	is	a	local	operator	since	it	is	defined	similar	to	the	
definition	of	usual	derivative.	

This	 paper	 discusses	 the	 comparation	 of	 conformable,	 Riemann-Liouville,	 and	 Caputo	
fractional	derivatives	of	order	𝛼	with	0 < 𝛼 < 1.	To	compare	them,	we	simulate	numerically	the	
solutions	to	fractional	ordinary	differential	equations	involving	the	three	fractional	derivatives.	

This	 paper	 is	 composed	 of	 five	 sections.	 The	 second	 section	 discusses	 briefly	 Riemann-
Liouville,	 Caputo,	 and	 conformable	 fractional	 derivatives.	 In	 the	 third	 section,	 the	 solutions	 to	
fractional	 ordinary	differential	 equations	 involving	Riemann-Liouville,	 Caputo,	 and	 conformable	
are	 given.	 	 Furthermore,	 comparation	of	 numerical	 simulation	 for	 the	 solutions	 is	 also	 given.	A	
conclusion	is	provided	in	the	last	section.	

	
Riemann-Liouville,	Caputo,	and	Conformable	fractional	derivatives	
This	section	discusses	briefly	Riemann-Liouville,	Caputo,	and	Conformable	fractional	derivatives.	
One	can	refer	 to	Podlubny	(1999)	and	Kilbas	et	al.	 (2006)	 for	more	detail	concerning	Riemann-
Liouville	 and	 Caputo	 fractional	 derivatives,	 and	Abdeljawad	 (2015)	 and	Khalil	 et	 al.	 (2014)	 for	
more	detail	regarding	conformable	fractional	derivative.	

We	first	define	fractional	integral	𝐼$! 	of	order	𝛼 > 0	 for	a	integrable	function	𝑓: (0,∞) → ℝ	
as	

𝐼$!𝑓(𝑡) =
1

Γ(𝛼)
; (𝑡 − 𝑠)!%#
$

"
𝑓(𝑠)𝑑𝑠, 𝑡 > 0.	

We	suppose	𝑛 ∈ ℕ.	Riemann-Liouville	fractional	derivative	 𝐷& $
! 	of	order	𝛼 ∈ (𝑛 − 1, 𝑛]	for	𝑓	
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is	then	defined	as	

𝐷& $
!𝑓(𝑡) =

1
Γ(𝑛 − 𝛼)

𝑑'

𝑑𝑡'
;(𝑡 − 𝑠)'%!(#𝑓(𝑠)𝑑𝑠
$

"

, 𝑡 > 0.	

Next,	Caputo	fractional	derivative	 𝐷) $
! 	of	order	𝛼 ∈ (𝑛 − 1, 𝑛]	for	𝑓	is	defined	as			

𝐷) $
!𝑓(𝑡) =

1
Γ(𝑛 − 𝛼)

;(𝑡 − 𝑠)'%!(#
𝑑'

𝑑𝑠'
𝑓(𝑠)𝑑𝑠

$

"

, 𝑡 > 0.	

Relationship	between	Riemann-Liouville	 and	Caputo	 fractional	derivatives	 is	 given	by	 the	
identity	

𝐷) $
!𝑓(𝑡) = 𝐷& $

!𝑓(𝑡) −D
𝑡*%!

Γ(𝑘 − 𝛼 + 1)
𝑓(*)(0)

'%#

*-"

, 𝑡 > 0.	

Some	properties	satisfied	by	usual	derivative	such	as	multiplication	rule,	division	rule,	chain	
rule,	Rolle	theorem,	and	mean	value	theorem	are	not	satisfied	by	both	fractional	derivatives.	

We	 now	 provide	 the	 definition	 of	 conformable	 fractional	 derivative	 𝑇!" 	 of	 order	 𝛼 ∈
(𝑛 − 1, 𝑛]	for	(⌈𝛼⌉ − 1)-times	differentiable	function	𝑓	at	𝑡 > 0	as	

𝑇!"𝑓(𝑡) = lim
𝜀→0

𝑓(⌈𝛼⌉−1))𝑡 + 𝜀𝑡(⌈𝛼⌉−𝛼)* − 𝑓(⌈𝛼⌉−1)(𝑡)
𝜀

	

where	⌈𝛼⌉	denotes	the	least	integer	that	is	greater	than	or	equal	to	𝛼.	It	follows	that	
𝑇!"𝑓(𝑡) = 𝑡⌈𝛼⌉−𝛼𝑓(⌈𝛼⌉)(𝑡).	

	
Fractional	ordinary	differential	equations	
This	 section	 discusses	 solutions	 to	 fractional	 Ordinary	 Differential	 Equations	 using	 Riemann-
Liouville,	 Caputo,	 and	 conformable	 fractional	Derivatives	 and	 then	 their	 numerical	 simulations.	
For	 more	 detail	 concerning	 these,	 one	 can	 refer	 to	 Abdeljawad	 (2015),	 Khalil	 et	 al.	 (2014),	
Podlubny	(1999),	and	Kilbas	(2006).	

	
Solutions	
The	 initial	 value	 problem	 of	 fractional	 ordinary	 differential	 equations	 with	 Riemann-Liouville	
fractional	derivative,	for	0 < 𝛼 < 1,	

𝐷& $
!𝑦(𝑡) = 𝜆𝑦(𝑡), 𝑡 > 0, 

with	the	initial	condition	

𝐼$#%!𝑦(𝑡)|$-" = 𝑦", 

has	the	solution	

𝑦(𝑡) = 𝑦"𝑡!%#𝐸!,!(𝜆𝑡!)	
where	𝐸!,5 	is	the	Mittag-Leffler	Function	defined	by	

𝛦!,5(𝑡) = D
𝑡*

Γ(𝛼𝑘 + 𝛽)

6

*-"

, 𝛼, 𝛽 > 0.	

	
The	initial	value	problem	of	fractional	ordinary	differential	equations	with	Caputo	fractional	

derivative,	for	0 < 𝛼 < 1,	
𝐷) $
!𝑦(𝑡) = 𝜆𝑦(𝑡), 𝑡 > 0, 

with	the	initial	condition	
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𝑦(𝑡)|$-" = 𝑦", 

has	the	solution	

𝑦(𝑡) = 𝑦"𝐸!,#(𝜆𝑡!).	
	

The	 initial	 value	 problem	 of	 fractional	 ordinary	 differential	 equations	 with	 conformable	
fractional	derivative,	for	0 < 𝛼 < 1,	

𝑇!"𝑦(𝑡) = 𝜆𝑦(𝑡), 𝑡 > 0, 

with	the	initial	condition	

𝑦(𝑡)|$-" = 𝑦", 

has	the	solution	

𝑦(𝑡) = 𝑦"𝑒
7$

!

! .	
	
Numerical	simulations	
The	solutions	to	the	fractional	ordinary	differential	equations	is	simulated	numerically	with	𝑦" =
1	and	0 ≤ 𝑡 ≤ 10.	The	graphs	of	the	solutions	to	the	fractional	ordinary	differential	equations	with	
Riemann-Liouville,	Caputo,	and	conformable	fractional	derivative	are	colored	by	red,	yellow,	and	
green,	respectively.			
	

 
(a)                                                                            (c) 

 
    (c) 

Figure	1.	The	graphs	of	the	solutions	for	(a)	𝛼 = 1/8		(b)	𝛼 = 1/4		(c)	𝛼 = 3/8	
 

	



   e-ISSN	2776-1029	p-ISSN	2776-1002	 	

 On	Conformable,	Riemann-Liouville,	and	Caputo	differential	(Guswanto,	Andini,	Triyani)														63	

 
(a)                                                                  (b)	

Figure	2.	.	The	graphs	of	the	solutions	for	(a)	𝛼 = 1/2		(b)	𝛼 = 5/8			

	
(a) 																																																																										(b)	

Figure	3.	The	graphs	of	the	solutions	for	(a)	𝛼 = 3/4		(b)	𝛼 = 7/8	
  

Figure	 1,	 Figure	 2,	 and	 Figure	 3	 show	us	 that	 the	 graphs	 of	 the	 solutions	with	Riemann-
Liouville	 and	 conformable	 fractional	 derivatives	 are	 sufficiently	 close	 for	0 < 𝛼 < 1.	 Moreover,	
based	on	Figures	1	and	2(a),	there	is	a	wide	gap	between	the	graph	of	the	solution	with	Caputo	
fractional	derivative	and	the	other	two	for	0 < 𝛼 ≤ 1/2.	The	graphs	of	the	solutions	with	the	three	
fractional	derivatives	are	sufficiently	close	for		1/2 < 𝛼 < 1	as	shown	by	Figures	2(b)	and	3.	If	𝛼	
gets	closer	to	1	then	the	graphs	of	the	solution	with	the	three	fractional	derivatives	are	closer	each	
other,	and,	for	𝛼 = 1,	the	graphs	are	the	same.	
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Conclusion	
The	numerical	simulations	of	the	solutions	to	the	initial	value	problems	of	the	fractional	ordinary	
differential	 equations	 show	 us	 that	 the	 graphs	 of	 solutions	 with	 Riemann-Liouville	 and	
conformable	fractional	derivatives	are	sufficiently	close	for	0 < 𝛼 < 1.	The	graphs	of	the	solutions	
with	 the	 three	 fractional	 derivatives	 are	 sufficiently	 close	 for	 1/2 < 𝛼 < 1.	 Thus,	 conformable	
fractional	 derivative	 can	 be	 used	 as	 an	 alternative	 to	 Riemann-Liouville	 and	 Caputo	 fractional	
derivatives	for	1/2 < 𝛼 < 1.	

The	advantage	of	 the	use	of	conformable	 fractional	derivative	 is	on	 its	definition	which	 is	
simpler	than	those	of	Riemann-Liouville	and	Caputo	fractional	derivatives.	The	other	advantage	is	
that	some	properties	of	usual	derivative	which	are	not	satisfied	by	Riemann-Liouville	and	Caputo	
are	in	fact	satisfied	by	conformable	fractional	derivative.	
	
References	
Abdeljawad,	T.	 (2015).	On	conformable	 fractional	calculus.	Journal	of	 computational	and	Applied	

Mathematics,	279,	57-66.	
Adams,	 E.	 E.,	 &	 Gelhar,	 L.	 W.	 (1992).	 Field	 study	 of	 dispersion	 in	 a	 heterogeneous	 aquifer:	 2.	

Spatial	moments	analysis.	Water	Resources	Research,	28(12),	3293-3307.	
Berkowitz,	 B.,	 Cortis,	 A.,	 Dentz,	 M.,	 &	 Scher,	 H.	 (2006).	 Modeling	 non-Fickian	 transport	 in	

geological	formations	as	a	continuous	time	random	walk.	Reviews	of	Geophysics,	44(2),	1-49.	
Hatano,	 Y.,	 &	 Hatano,	 N.	 (1998).	 Dispersive	 transport	 of	 ions	 in	 column	 experiments:	 An	

explanation	of	long-tailed	profiles.	Water	Resources	Research,	34(5),	1027-1033.	
Khalil,	 R.,	 Al	 Horani,	 M.,	 Yousef,	 A.,	 &	 Sababheh,	 M.	 (2014).	 A	 new	 definition	 of	 fractional	

derivative.	Journal	of	computational	and	applied	mathematics,	264,	65-70.	
Kilbas,	A.	A.,	Srivastava,	H.	M.,	Trujilo,	J.	J.	(2006).	Theory	and	Application	of	Fractional	Differential	

Equations.	Elsevier.	
Laffaldano,	G.,	Caputo,	M.,	&	Martino,	S.	(2006).	Experimental	and	theoretical	memory	diffusion	of	

water	in	sand.	Hydrology	and	Earth	System	Sciences,	10(1),	93-100.	
Podlubny,	I.	(1999).	Fractional	Differential	Equations.	Academic	Press.	
 
 
	
 
 
 
 
 


