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Introduction to Algorithm Using SAS Language 

This paper provides a road map of the practical approach using the biometry dataset to exponential 

growth modeling. Multiple linear regressions are a very famous technique and are extensively used 

in many fields especially in agricultural research. The parametric bootstrap method is 

recommended for the small sample size for reliable performance (Jung et al., 2005; Cassel, 2010). 

The bootstrap method is a statistical technique that falls under the broad heading of resampling. 

This method is very useful and can be used variously especially in the estimation of nearly any 

statistics (Cassel, 2010). This procedure involves a relatively simple procedure but is repeated so 

many times depending on the need of the researcher. The bootstrap technique is heavily dependent 

upon computer calculation. Using the bootstrap method, we can determine the estimating value of 

a parameter that presenting the whole of a population. Without using the bootstrap method, the 

value of the parameter of a population is impossible to measure directly. So, we use the statistical 

sampling method and we sample a population, measure a statistic of this sample, and then use these 
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 This paper provided an alternative method for exponential growth 
modeling as a regression analysis technique through the SAS 
algorithm. This alternative method is a combination technique (using 
nonlinear model bootstrap and fuzzy regression) for the small data 
set and gives the researcher an option to start the analysis, even if 
there is not enough data set. This method enhances the previous 
methodology with embedded bootstrapping and fuzzy technique to 
a nonlinear regression model. This principle aims to propose an 
alternative method of analysis with better results. In our case, we 
applied this principle to farm data and compared the results obtained 
by looking at the average width of the predicted interval.  
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statistics to say something about the corresponding parameter of the population (Cassel, 2010). For 

the case of nonlinear regression, we have to transform the equation from a non-linear to a linear 

form. Multiple linear regressions kk xxxY  ++++= 22110  are an extension of simple linear 

regression.  We used this technique to get a better result. The random error term is added to make 

the model probabilistic rather than deterministic. The value of the coefficient i  determines the 

contribution of the independent variables ix and  0  
is the y-intercept (Diem Ngo & La Puente, 

2012).  A fuzzy regression model corresponding to kk xZxZxZZY ++++= 22110  previously, 

explanatory variables  sxi '  
is assumed to be precise. However, according to the equation above, 

response variable Y is not crisp but is instead fuzzy. That means the parameters are also fuzzy. Our 

objective is to estimate these parameters. In further discussion, sZi ' are assumes symmetric fuzzy 

numbers which can be presented by the interval. For example, iZ  can be express as a fuzzy set 

given by = wci aaZ 11 ,  where ica  is the center and iwa is radius or vagueness associated. The 

fuzzy set above reflects the confidence in the regression coefficients around ica  in terms of 

symmetric triangular memberships function. Application of this method should be given more 

attention when the underlying phenomenon is fuzzy which means that the response variable is 

fuzzy. So, the relationship is also considered to be fuzzy. This = wci aaZ 11 ,  can be written as 

 RL aaZ 111 ,= with wcL aaa 111 −=  and wcR aaa 111 −= . In fuzzy regression methodology, 

parameters are estimated by minimizing total vagueness in the model. 

kjkjjj xZxZxZZy ++++= 22110 . Using = wci aaZ 11 ,  we can write += wcj aay 00 ,  

++ jwc xaa 111 , = jwjcnjnwnc aaxaa ,, . Thus this can be written as   ++= jccjc xaay 110  

njncxa+ then it can be written straightly as
njnwjwwjw xaxaay +++= 110

 .
    

As 
jwy

 
represent 

radius and so cannot be negative, therefore on the right-hand side of the equation

njnwjwwjw xaxaay +++= 110
, absolute values of ijx being taken. Suppose there are m data 

point, each comprising ( ) rowna −+1  vector. Then parameters iZ
 
are estimated by minimizing the 

quantity, which is the total vagueness of the model-data set combination, subject to the constraint 

that each data point must fall within the estimated value of the response variable. This can be 

visualized as the following linear programming problem, minimized 
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0 . And 0iwa . The simple procedure is commonly used 

to solve the linear programming problem (Kacprzyk & Fedrizzi, 1992). Data of this study is a sample 

which composed of two variables (See Table 1), while the data are in Table 2 and Table 3. 
 

Table 1. Description of data 

Num. Code Explanation of user variables 

1. Y Bacteria Reading 

2. X Dose 
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Table 2. Original data                                     Table 3. Taking LN for data 

Dose(X) Bacteria Reading (Y)  Dose(X) LN (Bacteria Reading)(Y) 
2.000 
3.000 
4.000 
5.000 
8.000 
9.000 
12.00 
13.00 
15.00 

1520.000 
19110.00 
16010.00 
13610.00 
5410.000 
5010.000 
2610.000 
1510.000 
910.0000 

 2.000 
3.000 
4.000 
5.000 
8.000 
9.000 
12.00 
13.00 
15.00 

7.33 
9.86 
9.68 
9.52 
8.60 
8.52 
7.87 
7.32 
6.81 

Exponential growth and decay regression was used in the analysis of the relationship 

between variables. The algorithm is given as follows. 
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Figure 1. Flow chart of an alternative exponential modeling 
 

Figure 1 showed the flow chart of an alternative method for the exponential modeling procedure. 

   
Step One 

By transforming the bXAeY =  into a linear form we obtained the following equation. bXAeY =

taking ln to the below, we obtained bxAeAAeY bXbX +=+== )ln()ln()ln()ln(ln . 

Transforming data Y into lnY and let the X data in the original condition. 
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Step Two 
/*Adding Bootstrapping Algorithm to the Method */ 

 
title "Performing bootstrap with case resampling"; 

proc surveyselect data=bacteria out=boot1 method=urs samprate=1 outhits 

rep=2; 

run; 

 

Step Three 
/*Running the Original Data using Bootstrap Method*/ 

 
data bacteria; 

input x y; 

datalines; 

2.00 7.33 

3.00 9.86 

4.00 9.68 

5.00 9.52 

8.00 8.60 

9.00 8.52 

12.00 7.87 

15.00 6.81 

; 

run; 

title "Performing bootstrap with case resampling"; 

proc surveyselect data=bacteria out=boot1 method=urs samprate=1 outhits 

rep=2; 

run; 

 

proc print data= boot1; 

run; 

 

The data enlargement after performing the bootstrapping method is presented in Table 4. 

 

Table 4. Data enlargement after performing the bootstrapping method. 

Dose LN (Bacteria Reading) (Y) 
2 7.33 
2 7.33 
3 9.86 
4 9.68 
4 9.68 

13 7.32 
13 7.32 
15 6.81 
2 7.33 
2 7.33 
4 9.68 
4 9.68 
9 8.52 
9 8.52 
9 8.52 

13 7.32 
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Step Four 
/*Running the Bootstrap Data Using Regression Method*/ 
 

ods rtf file='robdunc0.rtf' style=journal; 

Title “Simple Linear Regression Using Proc Reg”; 

Proc Reg Data=boot1 ; 

Model y = x; 

Run; 

ods rtf close; 

 

Results after performing the bootstrapping method is presented in Table 5. 
 

                                                    Table 5. Parameter estimates 
Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 8.90477 0.47669 18.68 <.0001 
x 1 -0.09487 0.05846 -1.62 0.1269 

 
              LN (Bacteria Reading) = 8.90477  -  0.09487                                        (1) 

                                     Standard Errors              (0.47669)    (0.05846) 
 

Now we calculated the width of the predicted least square method,  
 
Referring to the (1) we can calculate width as follows: 
 

Width = ( ) ( ) ( ) ( )XX ee 0584.009487.00584.009487.0 4767.0030.73674767.0030.7367 +−+− +−+  

            = ( )XX ee 1533.003641.0 55331.736650669.7367 −− −  

 

Step Five 
 

/*Performing Fuzzy Least Squares (FLS) to Exponential Growth and Decay Regression after Transforming the 

Equation into a Linear Form and Bootstrapping Method */ 

 

data bacteria; 

input x y; 

datalines; 

2 7.33 

2 7.33 

3 9.86 

4 9.68 

4 9.68 

13 7.32 

13 7.32 

15 6.81 

2 7.33 

2 7.33 

4 9.68 

4 9.68 

9 8.52 

9 8.52 

9 8.52 

13 7.32 

; 

ods rtf file='robdunc0.rtf' style=journal; 
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/* Method of fuzzy least squares (FLS)to the above data */  

proc nlp;  

min Y; 

decvar ar br ac bc; 

bounds ar>=0, br>=0, ac= 8.90477, bc= -0.09487;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+3*bc-ar-3*br<=9.86;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+15*bc-ar-15*br<=6.81;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+3*bc+ar+3*br>=9.86;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+13*bc+ar+13*br>=7.32;  

lincon ac+13*bc+ar+13*br>=7.32;  

lincon ac+15*bc+ar+15*br>=6.81;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+13*bc+ar+13*br>=7.32;  

Y=16*ar+108*br; 

run; 

 

ods rtf close; 

 

Table 6 shows the fitting exponential growth and decay regression value using fuzzy least 

square parameter estimates. 

 

Table 6. Fitting exponential growth and decay regression value using fuzzy least square 
parameter estimates 

 

N Parameter Estimate Gradient Objective Function Active Bound Constraint 
1 ar 1.385030 16.000000  
2 br 1.97325E-17 108.000000 Lower BC 
3 ac 8.904770 0 Equal BC 
4 bc -0.094870 0 Equal BC 

 
Substituting the values of parameter estimates in the model (Table 6) we obtained 
 

                  LN (Bacteria Reading) = 8.90477  -  0.09487                     (2) 
                                                Standard Errors              (1.385)         (0.000) 
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Referring to the (2) now we calculated the width of the predicted fuzzy least square method,  

 

Width = ( ) ( ) ( ) ( )XX ee 00.009487.000.009487.0 385030.1030.7367385030.1030.7367 −−+− −−+  

            = ( )XX ee 09487.009487..0 64497.736541503.7368 −− −  

 
Table 7 presents the width of predicted interval by least square and fuzzy least square. 

 

Table 7. Width of predicted interval by least square and fuzzy least square 

Dose 

 
LN (Bacteria 
Reading) (Y) 

Width of Predicted Interval 
Least Square in 

(LN) 
Fuzzy Least Square 

(LN) 
2 7.33 7.26 0.83 
2 7.33 7.26 0.83 
3 9.86 7.58 0.73 
4 9.68 7.77 0.64 
4 9.68 7.77 0.64 

13 7.32 8.18 -0.21 
13 7.32 8.18 -0.21 
15 6.81 8.17 -0.40 
2 7.33 7.26 0.83 
2 7.33 7.26 0.83 
4 9.68 7.77 0.64 
4 9.68 7.77 0.64 
9 8.52 8.15 0.17 
9 8.52 8.15 0.17 
9 8.52 8.15 0.17 

13 7.32 8.18 -0.21 
Average Width 7.81 0.38 

 

Conclusion  

We computed the predicted interval using method least square and method of fuzzy least square. 

Fuzzy least-square show the average much shorter compared to the method of least square. This 

indicated that fuzzy least square is more efficient than method least square. 
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