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Introduction 

Interpersonal communication is a fundamental human need, and the rapid development of 

internet-based social media platforms has profoundly transformed how individuals establish and 

maintain social connections. Despite their benefits in facilitating instant communication and 

information sharing, excessive and uncontrolled use of social media has been increasingly 

associated with behavioral addiction. Social media addiction is commonly characterized by 

compulsive and prolonged engagement that interferes with daily activities, responsibilities, and 

social functioning, potentially leading to diminished psychological well-being, strained 
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 In this study, we develop a deterministic SEARQS compartmental 
mathematical model to analyze the dynamics of social media 
addiction and evaluate the effectiveness of optimal control strategies. 
The model describes the transitions of individuals among susceptible 
(S), exposed (E), addicted (A), recovered (R), and quarantined (Q) 
classes. Two time-dependent control variables are incorporated into 
the model: the first control, 𝑢1 represents preventive awareness 
efforts that reduce the transitions from susceptible individuals to the 
exposed and quarantined classes  through education and public 
awareness campaigns, while the second control, u2 represents 
treatment interventions that enhance recovery by increasing the 
transitions from the exposed and addicted classes to the recovered 
class. An optimal control problem is formulated and analyzed using 
Pontryagin’s Minimum Principle to derive the necessary optimality 
conditions. Numerical simulations are performed using the forward–
backward sweep method to assess the impact of the proposed 
strategies. Simulation results indicate that, compared to the 
uncontrolled scenario, the combined awareness and treatment 
controls reduce the peak number of exposed individuals by 
approximately 14% and achieve an estimated 50% reduction in the 
peak prevalence of addicted individuals. These findings highlight the 
effectiveness of integrated intervention strategies and support their 
implementation as practical policy measures to mitigate the adverse 
effects of social media addiction on public health and societal well-
being. 

This is an open access article under the CC–BY-SA license. 

    

 

Keywords 
Social media addiction 
Mathematical model 
Pontryagin’s  
Minimum Principle 
Optimal control 
 
How to cite this article: 

Widayati, R., Reviladi, I., 
Afandi, N., & Rachmawati, R. 
(2026). Mathematical model 
of social media addiction: An 
optimal control approach. 
Bulletin of Applied 
Mathematics and Mathematics 
Education, 5(2), 121-134. 
 
 

 

https://uad.ac.id/en/
mailto:zalik.nuryana@uad.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


 BAMME Vol. 5 No. 2, October 2025, pp. 121-134          

134                  10.12928/bamme.v5i2.14795 

 

interpersonal relationships, and reduced academic or occupational performance (Hou et al. 2019). 

A growing body of empirical research has further linked excessive social media use to adverse 

mental health outcomes, including increased anxiety, loneliness, and suicidal ideation (Pellegrino, 

Stasi, and Bhatiasevi 2022). 

As of 2022, approximately 4.62 billion individuals out of a global population of 7.91 billion 

were active social media users worldwide. On average, individuals spent nearly 6 hours and 58 

minutes online per day, with about 2 hours and 27 minutes devoted specifically to social media 

usage. This widespread and prolonged engagement underscores the central role of social media in 

everyday life, while simultaneously raising concerns about excessive exposure and the emergence 

of addictive behavioral patterns. Although these aggregated statistics are not directly used to 

estimate the model parameters in this study, they provide important contextual justification for the 

assumed intensity of exposure and interaction. In particular, prolonged daily usage suggests 

frequent opportunities for behavioral influence, supporting the choice of moderate-to-high 

exposure and relapse rates. Future studies may utilize platform-specific usage data or longitudinal 

surveys to calibrate transmission, quitting, and recovery parameters more precisely. 

Social media addiction may propagate through mechanisms of behavioral and social 

contagion rather than biological transmission. Individuals exhibiting addictive usage patterns can 

influence susceptible users through repeated exposure to highly engaging content, such as frequent 

posts, algorithm-driven recommendations, online challenges, influencer promotions, and implicit 

social pressure to remain active. These mechanisms contribute to normalization of excessive usage 

and intensify fear of missing out (FOMO), particularly among adolescents and young adults who are 

highly responsive to peer validation and social belonging (Przybylski et al. 2013). As a result, casual 

engagement may gradually evolve into compulsive use, allowing addictive behaviors to spread 

across social networks in a manner analogous to a behavioral epidemic (Bather et al. 2012). To 

capture this population-level influence, the present study adopts the mass action principle as a first-

order approximation of interaction between susceptible and addicted individuals. While this 

assumption simplifies heterogeneous interaction patterns and algorithmic biases inherent in real 

social networks, it provides a tractable framework for analyzing large-scale addiction dynamics. 

The limitations of this approach motivate future extensions incorporating network-based or 

frequency-dependent transmission mechanisms. 

Mathematical modeling has been widely applied to study the spread and control of addictive 

behaviors, including substance abuse and behavioral addictions such as online gaming and social 

media use (Alemneh and Alemu 2021). Previous studies have examined alcohol consumption 

dynamics influenced by media exposure (Ma, Huo, and Meng 2015; Sharma and Samanta 2013), the 

role of media in disease transmission (Cui, Sun, and Zhu 2008), and treatment-based interventions 

for alcohol dependence (Khajji et al. 2020). In the context of behavioral addiction, (Guo and Li 2020) 

proposed a five-compartment model for online gaming addiction, while (Ishaku et al. 2018) 

investigated the impact of social media use on academic performance by categorizing users based 

on activity levels. Compartmental models for social media addiction have also been developed in 

(Alemneh 2020; Al Addawiyah and Fuad 2023), where populations were divided into multiple user 

classes. However, these models often assume permanent recovery, include addiction-induced 

mortality, or incorporate transition probabilities for low-frequency users, which may not 

accurately reflect the cyclical nature of social media engagement. 

Recent research has applied mathematical modeling to understand and control social media 

addiction. Fractional-order models have been shown to capture memory effects and long-term 

dependence in addictive behavior (Shutaywi, Rehman, and Shah 2023), while equilibrium and 
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stability analyses have been facilitated through computational approaches (KOCABIYIK 2025). 

Epidemiological frameworks such as SIR-type models indicate that social media addiction can 

persist when the reproduction threshold exceeds unity (Side, Sanusi, and Rustan 2020). Numerical 

studies further emphasize the role of high-order schemes in accurately describing addiction 

dynamics (Fatahillah A 2025). In addition, SEI₁I₂R models applied to TikTok addiction reveal that 

heterogeneous exposure and addiction severity significantly affect prevalence outcomes(Abi et al. 

2023; Abi et al. 2023). 

Several mathematical modeling studies have been conducted to analyze the dynamics and 

control of social media addiction. (Pagga et al. 2015) investigated a compartmental model and 

demonstrated that the stability of the addiction-free equilibrium is strongly influenced by exposure 

and recovery rates. Using a simpler SIR framework (Lestari et al. 2025) showed that increasing the 

recovery rate significantly reduces the number of addicted individuals among university students. 

(Romlah, Thahiruddin, and Sarifah 2025) further explored the numerical behavior of a TikTok 

addiction model, highlighting the sensitivity of long-term addiction dynamics to key transition 

parameters. Extending the scope to mental health outcomes, (Ali et al. 2024) developed a coupled 

mathematical model linking social media addiction and depression, showing that effective control 

of addictive behavior can indirectly mitigate adverse psychological effects. From an optimal control 

perspective, (Kamal, Ahmed, and Sarkar 2025) demonstrated that time-dependent intervention 

strategies are capable of reducing the basic reproduction number and achieving cost-effective 

addiction control. Similarly, (Juhari and Alisah 2024) analyzed an optimal control model and 

concluded that a combination of preventive awareness and treatment-based interventions yields 

the most effective reduction in addiction prevalence. Collectively, these studies underscore the 

importance of recovery mechanisms, parameter sensitivity, and adaptive control strategies in 

understanding and mitigating social media addiction. 

In contrast to existing approaches, the present study formulates a SEARQ compartmental 

model that explicitly incorporates a quitting (Q) class to represent temporary disengagement from 

social media, together with relapse pathways that allow individuals in the recovered or quitting 

states to return to exposure or addiction. This structure reflects empirical evidence indicating that 

social media addiction is typically characterized by recurrent cycles of abstinence and relapse 

rather than permanent cessation. Mortality due to addiction is excluded, consistent with the non-

fatal nature of social media overuse, and transitions involving low-frequency users are omitted to 

concentrate on the dominant addiction dynamics. These modeling choices yield a more realistic 

framework for capturing long-term behavioral patterns and for evaluating the effectiveness of 

intervention strategies. 

Several studies have previously investigated mathematical models of online behavioral 

addictions.(Karimah 2022) analyzed an online gaming addiction model by examining equilibrium 

stability and implementing optimal control to reduce addiction prevalence. (Firdaus and Krisnawan 

2023) developed a TikTok addiction model based on survey data using an S𝐴₁𝐴₂R structure, 

predicting that severe addiction would remain dominant over mild addiction, although both decline 

over time. In contrast to these studies, the present model explicitly incorporates quitting and 

relapse mechanisms within an optimal control framework, enabling a more comprehensive 

assessment of prevention and treatment policies over extended time horizons. 

Building upon the work of (Widayati and Reviladi 2023), which analyzed the local stability of the 

disease-free equilibrium for the same SEARQ model without control measures, this study integrates 

optimal control strategies representing preventive awareness and treatment interventions. The 

proposed framework enables the assessment of combined strategies aimed at reducing exposure, 
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promoting recovery, and mitigating relapse, thereby offering actionable insights for policymakers 

and stakeholders seeking to address the societal impacts of social media addiction. 

Method  

Model Formulation 

In this section, we develop a deterministic mathematical model to describe the dynamics of social 

media addiction, based on the following assumptions: the phenomenon occurs within a closed 

population; factors such as sex, race, and social status do not influence the likelihood of becoming 

addicted to social media; and individuals within the population are assumed to interact 

homogeneously, meaning each person has the same level and type of interaction with others. 

The model is built upon several key assumptions. First, the natural birth rate is assumed to be equal 

to the natural death rate, ensuring a constant total population over time. Second, deaths resulting 

directly from social media addiction are not considered in this model. Third, individuals who have 

either never used social media or who have ceased using it permanently may still return to a 

susceptible state, meaning they can potentially become users again. Lastly, all population 

compartments are assumed to experience the same natural death rate. 

In constructing this model, the population is assumed to be divided into five distinct 

compartments. The susceptible individuals (s) are those who are vulnerable to developing social 

media addiction. The exposed individuals (e) are those who use social media but have not yet 

developed signs of addiction. The addicted individuals (a) represent those who are currently 

addicted to social media. The recovered individuals (r) are those who have overcome their 

addiction. Lastly, the quit individuals (q) are those who have completely stopped using social media. 

Newborn individuals enter the susceptible population at a natural birth rate denoted by μ. 

Susceptible individuals interact with those who are addicted to social media at an interaction rate 

β. This interaction influences susceptible individuals to begin using social media, transitioning them 

into the exposed class i.e. individuals who use social media but are not yet addicted. Exposed 

individuals may develop an addiction and move into the addicted class at a rate δ while some 

exposed individuals recover through treatment at a rate α. Addicted individuals may transition to 

the recovered class at a rate ε as a result of education and/or rehabilitation. Recovered individuals 

may become susceptible again to social media addiction at a rate γ while some may completely 

cease using social media at a rate η. Susceptible individuals may also quit social media at a rate κ 

whereas those in the quit class can return to the susceptible class at a rate χ. All population 

compartments are assumed to experience the same natural death rate μ. 

In this section, we aim to minimize the prevalence of social media addiction through the 

introduction of control variables. The first control variable u1(t) represents preventive efforts 

designed to reduce contact between susceptible individuals and those who are addicted. These 

efforts may include public awareness campaigns and educational programs that emphasize the 

negative consequences of excessive social media use. The second control variable u2(t) is 

implemented to manage addicted individuals by providing appropriate treatment interventions, as 

described in the introduction, to support their recovery. The following diagram illustrates the 

transition dynamics representing the described control framework. 
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(2) 

(1) 

 
Figure 1. Compartmental diagram of social media addiction dynamics with control measures. 

Taking into account the considerations outlined above and the flow diagram presented in 

Figure 1, the dynamics of social media addiction within the human population can be described by 

the following system of nonlinear differential equations: 
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Optimal Control Analysis 

To facilitate the study of the optimal control problem, we define the control set U as follows: 

𝑈 = {(𝑢1(𝑡), 𝑢2(𝑡)): 0 ≤ 𝑢1(𝑡) ≤ 1,0 ≤ 𝑢2(𝑡) ≤ 1,0 ≤ 𝑡 ≤ 𝑡𝑓}. 

The integration of control measures into the model aims to determine the optimal intensity of 

intervention strategies that effectively reduce both the spread of social media addiction and the 

associated implementation costs. The control variables 𝑢1 and 𝑢2 are optimized subject to the 

constraints imposed by the system of differential Equations (1), with the objective functional 

defined as follows: 
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Here,  𝑡𝑓 represents the final time, while 𝑐1 and 𝑐2  serve as weighting parameters associated 

with the Exposed and Addicted compartments, respectively. Similarly, 𝑐3 and 𝑐4 represent the 

weighting coefficients corresponding to each control measure. Following the formulation of the 

optimal control problem, the existence of optimal control variables is established. Thereafter, the 

Pontryagin Minimum Principle is applied to characterize the optimal controls and derive the 

corresponding optimality conditions for the model. 
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We examine the existence of an optimal control for the proposed problem by applying the 

theoretical framework developed by Fleming and Rishel (Bather, Fleming, and Rishel 1976). 

Theorem 1. There exists an optimal control pair  𝑢∗ = (𝑢1
∗, 𝑢2

∗) ∈ 𝑈 such that  

𝐽(𝑢1
∗, 𝑢2

∗) = 𝑚𝑖𝑛{𝐽(𝑢1, 𝑢2)|𝑢1(𝑡), 𝑢2(𝑡) ∈ 𝑈} 

where 𝑈 = {(𝑢1(𝑡), 𝑢2(𝑡)): 0 ≤ 𝑢1(𝑡) ≤ 1,0 ≤ 𝑢2(𝑡) ≤ 1,0 ≤ 𝑡 ≤ 𝑡𝑓} is a closed admissible control 

set. This optimization is subject to the control system defined in Equations (1), along with the 
specified initial conditions. 

Proof of Theorem 1.   

To establish the existence of an optimal control, we follow the standard framework in optimal 
control theory as described in (Bather et al. 1976). The admissible control set 𝑈 is nonempty, 

convex, closed, and bounded in 𝐿∞(0, 𝑡𝑓). For any admissible control (𝑢1, 𝑢2) ∈ 𝑈, the 

corresponding state system admits a unique solution, and all state variables remain nonnegative 

and bounded for all 𝑡 ∈ [0, 𝑡𝑓]. Moreover, the right-hand side of the state system depends linearly 

on the control variables and is bounded by a linear function of the state and control variables. The 
integrand of the objective functional is convex with respect to the control variables. In addition, 
there exist positive constants 𝑐3 and 𝑐4 and an exponent 𝑘 > 1 such that the growth condition 

𝐿(𝑥, 𝑢) ≥ 𝑐3‖𝑢‖𝑘 − 𝑐4 

is satisfied for 𝑘 = 2. 

Therefore, by standard existence results for optimal control problems (see Fleming and Rishel 
[20]), there exists an optimal control pair 𝑢∗ = (𝑢1

∗, 𝑢2
∗) ∈ 𝑈 that minimizes the objective function. 

∎ 

The following section is devoted to the application of the Pontryagin Minimum Principle in order 

to identify the optimal control that satisfies the necessary conditions. This principle is employed to 

reformulate Equations (1) and (2) into a pointwise Hamiltonian minimization problem, with the 

objective of determining the optimal control functions 𝑢1(𝑡) and 𝑢2(𝑡). The corresponding 

Hamiltonian function is defined as follows: 
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where 𝜆𝑖 for 𝑖 = 1,2, … ,5 denote the adjoint variables to be determined. 
 

Theorem 2. Let 𝑢∗ = (𝑢1
∗, 𝑢2

∗) be an optimal control in the control space 𝑈, along with the solution 
𝑠∗(𝑡), 𝑒∗(𝑡), 𝑎∗(𝑡), 𝑟∗(𝑡), 𝑞∗(𝑡) for the associated state system defined by Eqs (1) and (2). There exist 
adjoint variables 𝜆𝑖 for 𝑖 = 1,2, … ,5 that satisfy the equation below 
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𝜆̇5 = −
𝜕𝐻

𝜕𝑞
 

with transversality conditions 𝜆𝑖(𝑡𝑓) for 𝑖 = 1,2, … ,5 and control set 𝑢∗ = (𝑢1
∗ , 𝑢2

∗) characterized by 
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Proof of Theorem 2. According to Pontryagin’s Minimum Principle, differentiating the 
Hamiltonian yields the adjoint system, which can be expressed as follows: 
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By applying standard control methods and considering the constraints on the control values 
within the control set 𝑈, the forms of 𝑢₁ and 𝑢₂ can be readily determined. This is accomplished by 
following established procedures in control theory and accounting for the upper and lower bounds 
imposed on the admissible controls, as outlined below 
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The optimality system is composed of the optimal control system (state equations) and the 

adjoint system, combined with the set of control functions characterized by the initial and 

transversality conditions: 
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Results and Discussion 

Numerical Simulation 

To carry out the numerical simulations, we employ the parameter values presented in the table 

below. These parameters are essential for solving the optimality system and for analyzing the 

dynamic behavior of the model under specified conditions. Numerical simulation plays a vital role 

in the study of epidemiological problems, particularly when analytical solutions to complex 

nonlinear systems are difficult or impossible to derive. Through simulation, we gain a deeper 

understanding of the progression of social media addiction, assess the effectiveness of various 

control strategies, and provide valuable insights to support optimal decision-making in public 

health interventions. 
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Table 1. Description of parameters of the social media addiction model (1). 

Parameter Description Value Source 

𝜇 Natural death rate/ natural birth rate 0.25 
(Alemneh and 

Alemu 2021) 

𝛽 Interaction rate/  transmission rate 0.6 (Wang et al. 2014) 

𝛿 
The rate at which exposed individuals become 

addicted 
0.175 (Guo and Li 2020) 

𝛼 
The rate at which exposed individuals recover 

through treatment 
0.075 (Guo and Li 2020) 

𝜀 
Addicted individuals that join recovered class 

due to the treatment 
0.7 

(Huo and Wang 

2014) 

𝜂 
The rate at which recovered individuals 

permanently stop using social media 
0.26 (Guo and Li 2020) 

𝛾 
The rate at which recovered individuals become 

susceptible again 
0.14 

(Huo and Wang 

2014) 

𝜅 
The rate at which susceptible individuals quit 

social media 
0.01 

(Alemneh and 

Alemu 2021) 

𝜒 
The rate at which individuals in the quit class 

return to being susceptible 
0.2 Assumed 

 

In this section, we perform a numerical simulation of the optimality system using MATLAB. To 

simulate the optimality system presented in equation (6), we implemented the model 

computationally using the forward-backward sweep method. This method involves solving the 

state equations forward in time and the adjoint equations backward in time, iteratively updating 

the control variables until convergence is achieved. For the simulation, we used the parameter 

values listed in Table 1 and the following initial conditions: 𝑠(0) = 1000, 𝑒(0) = 10, 𝑎(0) = 50, 

𝑟(0) = 0 and 𝑞(0) = 100. Additionally, the weight constants were set as follows: 𝑐1 = 1, 𝑐2 = 2, 

𝑐3 = 10 and 𝑐4 = 10  (Alemneh 2020). 

 
Figure 2. The impact of optimal control strategies on the exposed compartment. 
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Figure 2 shows the decline of the exposed population over time, comparing scenarios with 

and without control measures. Without control (red line), the decline is slower, indicating 

prolonged exposure. In contrast, with control (blue dashed line), the number of exposed individuals 

drops rapidly. This highlights the effectiveness of control measures in reducing exposure more 

quickly and efficiently. 

 
Figure 3. The impact of optimal control strategies on the addicted compartment. 

Figure 3 illustrates the number of addicted individuals over time under two scenarios: with 

and without control measures. Without control (red line), the addicted population rises to a higher 

peak and declines slowly. In contrast, with control (blue dashed line), the peak is lower and the 

decline occurs more rapidly. This indicates that control interventions significantly reduce both the 

severity and duration of addiction in the population. 

 

 
Figure 4. Optimal control profile. 
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Figure 4 presents the optimal time profiles of the control strategies: preventive effort (u1) 

and treatment intervention (u2). The preventive effort peaks briefly at the beginning and then 

decreases to zero around t = 7, indicating its importance in the early phase. Meanwhile, the 

treatment intervention remains at its maximum level until around t = 13, after which it gradually 

declines. This suggests that prevention is most effective early on, while treatment plays a sustained 

role before being gradually reduced. 

Conclusion 

This study developed and analyzed a SEARQS compartmental model with optimal control to 

investigate the dynamics of social media addiction and the effectiveness of preventive and 

treatment-based interventions. By incorporating awareness campaigns and treatment programs as 

time-dependent control variables, the proposed framework provides both qualitative and 

quantitative insights into addiction mitigation strategies. 

A key theoretical finding of this work is that the optimal control strategy successfully 

maintains the basic reproduction number 𝑅0 below unity. This result guarantees, from a 

mathematical perspective, that the prevalence of social media addiction declines over time under 

the combined intervention strategy. In contrast, scenarios without control or with isolated 

interventions fail to consistently keep 𝑅0 < 1 allowing addiction to persist within the population. 

This highlights the critical role of integrated and well-coordinated control measures. 

Numerical simulations further demonstrate that the optimal controls are inherently time-

dependent, with stronger interventions required during the early stages of exposure and addiction, 

followed by gradual relaxation as the system approaches stability. These findings confirm that static 

or constant-intensity policies are suboptimal and may lead to unnecessary costs or reduced 

effectiveness. Instead, adaptive control strategies achieve superior outcomes while balancing 

intervention costs and public health benefits. 

From a policy perspective, the results strongly recommend the simultaneous 

implementation of preventive awareness campaigns and targeted treatment programs. Public 

education initiatives should focus on reducing initial exposure, while rehabilitation and support 

services should be dynamically adjusted to facilitate recovery and prevent relapse. Overall, this 

study underscores that adaptive, time-dependent intervention strategies are essential for cost-

effective and sustainable control of social media addiction, offering valuable guidance for 

policymakers, educators, and public health stakeholders. 
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